507 lines
16 KiB
C++
507 lines
16 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/base/natsocketfactory.h"
|
|
|
|
#include "webrtc/base/arraysize.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/natserver.h"
|
|
#include "webrtc/base/virtualsocketserver.h"
|
|
|
|
namespace rtc {
|
|
|
|
// Packs the given socketaddress into the buffer in buf, in the quasi-STUN
|
|
// format that the natserver uses.
|
|
// Returns 0 if an invalid address is passed.
|
|
size_t PackAddressForNAT(char* buf, size_t buf_size,
|
|
const SocketAddress& remote_addr) {
|
|
const IPAddress& ip = remote_addr.ipaddr();
|
|
int family = ip.family();
|
|
buf[0] = 0;
|
|
buf[1] = family;
|
|
// Writes the port.
|
|
*(reinterpret_cast<uint16_t*>(&buf[2])) = HostToNetwork16(remote_addr.port());
|
|
if (family == AF_INET) {
|
|
ASSERT(buf_size >= kNATEncodedIPv4AddressSize);
|
|
in_addr v4addr = ip.ipv4_address();
|
|
memcpy(&buf[4], &v4addr, kNATEncodedIPv4AddressSize - 4);
|
|
return kNATEncodedIPv4AddressSize;
|
|
} else if (family == AF_INET6) {
|
|
ASSERT(buf_size >= kNATEncodedIPv6AddressSize);
|
|
in6_addr v6addr = ip.ipv6_address();
|
|
memcpy(&buf[4], &v6addr, kNATEncodedIPv6AddressSize - 4);
|
|
return kNATEncodedIPv6AddressSize;
|
|
}
|
|
return 0U;
|
|
}
|
|
|
|
// Decodes the remote address from a packet that has been encoded with the nat's
|
|
// quasi-STUN format. Returns the length of the address (i.e., the offset into
|
|
// data where the original packet starts).
|
|
size_t UnpackAddressFromNAT(const char* buf, size_t buf_size,
|
|
SocketAddress* remote_addr) {
|
|
ASSERT(buf_size >= 8);
|
|
ASSERT(buf[0] == 0);
|
|
int family = buf[1];
|
|
uint16_t port =
|
|
NetworkToHost16(*(reinterpret_cast<const uint16_t*>(&buf[2])));
|
|
if (family == AF_INET) {
|
|
const in_addr* v4addr = reinterpret_cast<const in_addr*>(&buf[4]);
|
|
*remote_addr = SocketAddress(IPAddress(*v4addr), port);
|
|
return kNATEncodedIPv4AddressSize;
|
|
} else if (family == AF_INET6) {
|
|
ASSERT(buf_size >= 20);
|
|
const in6_addr* v6addr = reinterpret_cast<const in6_addr*>(&buf[4]);
|
|
*remote_addr = SocketAddress(IPAddress(*v6addr), port);
|
|
return kNATEncodedIPv6AddressSize;
|
|
}
|
|
return 0U;
|
|
}
|
|
|
|
|
|
// NATSocket
|
|
class NATSocket : public AsyncSocket, public sigslot::has_slots<> {
|
|
public:
|
|
explicit NATSocket(NATInternalSocketFactory* sf, int family, int type)
|
|
: sf_(sf), family_(family), type_(type), connected_(false),
|
|
socket_(NULL), buf_(NULL), size_(0) {
|
|
}
|
|
|
|
~NATSocket() override {
|
|
delete socket_;
|
|
delete[] buf_;
|
|
}
|
|
|
|
SocketAddress GetLocalAddress() const override {
|
|
return (socket_) ? socket_->GetLocalAddress() : SocketAddress();
|
|
}
|
|
|
|
SocketAddress GetRemoteAddress() const override {
|
|
return remote_addr_; // will be NIL if not connected
|
|
}
|
|
|
|
int Bind(const SocketAddress& addr) override {
|
|
if (socket_) { // already bound, bubble up error
|
|
return -1;
|
|
}
|
|
|
|
int result;
|
|
socket_ = sf_->CreateInternalSocket(family_, type_, addr, &server_addr_);
|
|
result = (socket_) ? socket_->Bind(addr) : -1;
|
|
if (result >= 0) {
|
|
socket_->SignalConnectEvent.connect(this, &NATSocket::OnConnectEvent);
|
|
socket_->SignalReadEvent.connect(this, &NATSocket::OnReadEvent);
|
|
socket_->SignalWriteEvent.connect(this, &NATSocket::OnWriteEvent);
|
|
socket_->SignalCloseEvent.connect(this, &NATSocket::OnCloseEvent);
|
|
} else {
|
|
server_addr_.Clear();
|
|
delete socket_;
|
|
socket_ = NULL;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int Connect(const SocketAddress& addr) override {
|
|
if (!socket_) { // socket must be bound, for now
|
|
return -1;
|
|
}
|
|
|
|
int result = 0;
|
|
if (type_ == SOCK_STREAM) {
|
|
result = socket_->Connect(server_addr_.IsNil() ? addr : server_addr_);
|
|
} else {
|
|
connected_ = true;
|
|
}
|
|
|
|
if (result >= 0) {
|
|
remote_addr_ = addr;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int Send(const void* data, size_t size) override {
|
|
ASSERT(connected_);
|
|
return SendTo(data, size, remote_addr_);
|
|
}
|
|
|
|
int SendTo(const void* data,
|
|
size_t size,
|
|
const SocketAddress& addr) override {
|
|
ASSERT(!connected_ || addr == remote_addr_);
|
|
if (server_addr_.IsNil() || type_ == SOCK_STREAM) {
|
|
return socket_->SendTo(data, size, addr);
|
|
}
|
|
// This array will be too large for IPv4 packets, but only by 12 bytes.
|
|
std::unique_ptr<char[]> buf(new char[size + kNATEncodedIPv6AddressSize]);
|
|
size_t addrlength = PackAddressForNAT(buf.get(),
|
|
size + kNATEncodedIPv6AddressSize,
|
|
addr);
|
|
size_t encoded_size = size + addrlength;
|
|
memcpy(buf.get() + addrlength, data, size);
|
|
int result = socket_->SendTo(buf.get(), encoded_size, server_addr_);
|
|
if (result >= 0) {
|
|
ASSERT(result == static_cast<int>(encoded_size));
|
|
result = result - static_cast<int>(addrlength);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int Recv(void* data, size_t size, int64_t* timestamp) override {
|
|
SocketAddress addr;
|
|
return RecvFrom(data, size, &addr, timestamp);
|
|
}
|
|
|
|
int RecvFrom(void* data,
|
|
size_t size,
|
|
SocketAddress* out_addr,
|
|
int64_t* timestamp) override {
|
|
if (server_addr_.IsNil() || type_ == SOCK_STREAM) {
|
|
return socket_->RecvFrom(data, size, out_addr, timestamp);
|
|
}
|
|
// Make sure we have enough room to read the requested amount plus the
|
|
// largest possible header address.
|
|
SocketAddress remote_addr;
|
|
Grow(size + kNATEncodedIPv6AddressSize);
|
|
|
|
// Read the packet from the socket.
|
|
int result = socket_->RecvFrom(buf_, size_, &remote_addr, timestamp);
|
|
if (result >= 0) {
|
|
ASSERT(remote_addr == server_addr_);
|
|
|
|
// TODO: we need better framing so we know how many bytes we can
|
|
// return before we need to read the next address. For UDP, this will be
|
|
// fine as long as the reader always reads everything in the packet.
|
|
ASSERT((size_t)result < size_);
|
|
|
|
// Decode the wire packet into the actual results.
|
|
SocketAddress real_remote_addr;
|
|
size_t addrlength = UnpackAddressFromNAT(buf_, result, &real_remote_addr);
|
|
memcpy(data, buf_ + addrlength, result - addrlength);
|
|
|
|
// Make sure this packet should be delivered before returning it.
|
|
if (!connected_ || (real_remote_addr == remote_addr_)) {
|
|
if (out_addr)
|
|
*out_addr = real_remote_addr;
|
|
result = result - static_cast<int>(addrlength);
|
|
} else {
|
|
LOG(LS_ERROR) << "Dropping packet from unknown remote address: "
|
|
<< real_remote_addr.ToString();
|
|
result = 0; // Tell the caller we didn't read anything
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int Close() override {
|
|
int result = 0;
|
|
if (socket_) {
|
|
result = socket_->Close();
|
|
if (result >= 0) {
|
|
connected_ = false;
|
|
remote_addr_ = SocketAddress();
|
|
delete socket_;
|
|
socket_ = NULL;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int Listen(int backlog) override { return socket_->Listen(backlog); }
|
|
AsyncSocket* Accept(SocketAddress* paddr) override {
|
|
return socket_->Accept(paddr);
|
|
}
|
|
int GetError() const override { return socket_->GetError(); }
|
|
void SetError(int error) override { socket_->SetError(error); }
|
|
ConnState GetState() const override {
|
|
return connected_ ? CS_CONNECTED : CS_CLOSED;
|
|
}
|
|
int EstimateMTU(uint16_t* mtu) override { return socket_->EstimateMTU(mtu); }
|
|
int GetOption(Option opt, int* value) override {
|
|
return socket_->GetOption(opt, value);
|
|
}
|
|
int SetOption(Option opt, int value) override {
|
|
return socket_->SetOption(opt, value);
|
|
}
|
|
|
|
void OnConnectEvent(AsyncSocket* socket) {
|
|
// If we're NATed, we need to send a message with the real addr to use.
|
|
ASSERT(socket == socket_);
|
|
if (server_addr_.IsNil()) {
|
|
connected_ = true;
|
|
SignalConnectEvent(this);
|
|
} else {
|
|
SendConnectRequest();
|
|
}
|
|
}
|
|
void OnReadEvent(AsyncSocket* socket) {
|
|
// If we're NATed, we need to process the connect reply.
|
|
ASSERT(socket == socket_);
|
|
if (type_ == SOCK_STREAM && !server_addr_.IsNil() && !connected_) {
|
|
HandleConnectReply();
|
|
} else {
|
|
SignalReadEvent(this);
|
|
}
|
|
}
|
|
void OnWriteEvent(AsyncSocket* socket) {
|
|
ASSERT(socket == socket_);
|
|
SignalWriteEvent(this);
|
|
}
|
|
void OnCloseEvent(AsyncSocket* socket, int error) {
|
|
ASSERT(socket == socket_);
|
|
SignalCloseEvent(this, error);
|
|
}
|
|
|
|
private:
|
|
// Makes sure the buffer is at least the given size.
|
|
void Grow(size_t new_size) {
|
|
if (size_ < new_size) {
|
|
delete[] buf_;
|
|
size_ = new_size;
|
|
buf_ = new char[size_];
|
|
}
|
|
}
|
|
|
|
// Sends the destination address to the server to tell it to connect.
|
|
void SendConnectRequest() {
|
|
char buf[kNATEncodedIPv6AddressSize];
|
|
size_t length = PackAddressForNAT(buf, arraysize(buf), remote_addr_);
|
|
socket_->Send(buf, length);
|
|
}
|
|
|
|
// Handles the byte sent back from the server and fires the appropriate event.
|
|
void HandleConnectReply() {
|
|
char code;
|
|
socket_->Recv(&code, sizeof(code), nullptr);
|
|
if (code == 0) {
|
|
connected_ = true;
|
|
SignalConnectEvent(this);
|
|
} else {
|
|
Close();
|
|
SignalCloseEvent(this, code);
|
|
}
|
|
}
|
|
|
|
NATInternalSocketFactory* sf_;
|
|
int family_;
|
|
int type_;
|
|
bool connected_;
|
|
SocketAddress remote_addr_;
|
|
SocketAddress server_addr_; // address of the NAT server
|
|
AsyncSocket* socket_;
|
|
char* buf_;
|
|
size_t size_;
|
|
};
|
|
|
|
// NATSocketFactory
|
|
NATSocketFactory::NATSocketFactory(SocketFactory* factory,
|
|
const SocketAddress& nat_udp_addr,
|
|
const SocketAddress& nat_tcp_addr)
|
|
: factory_(factory), nat_udp_addr_(nat_udp_addr),
|
|
nat_tcp_addr_(nat_tcp_addr) {
|
|
}
|
|
|
|
Socket* NATSocketFactory::CreateSocket(int type) {
|
|
return CreateSocket(AF_INET, type);
|
|
}
|
|
|
|
Socket* NATSocketFactory::CreateSocket(int family, int type) {
|
|
return new NATSocket(this, family, type);
|
|
}
|
|
|
|
AsyncSocket* NATSocketFactory::CreateAsyncSocket(int type) {
|
|
return CreateAsyncSocket(AF_INET, type);
|
|
}
|
|
|
|
AsyncSocket* NATSocketFactory::CreateAsyncSocket(int family, int type) {
|
|
return new NATSocket(this, family, type);
|
|
}
|
|
|
|
AsyncSocket* NATSocketFactory::CreateInternalSocket(int family, int type,
|
|
const SocketAddress& local_addr, SocketAddress* nat_addr) {
|
|
if (type == SOCK_STREAM) {
|
|
*nat_addr = nat_tcp_addr_;
|
|
} else {
|
|
*nat_addr = nat_udp_addr_;
|
|
}
|
|
return factory_->CreateAsyncSocket(family, type);
|
|
}
|
|
|
|
// NATSocketServer
|
|
NATSocketServer::NATSocketServer(SocketServer* server)
|
|
: server_(server), msg_queue_(NULL) {
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::GetTranslator(
|
|
const SocketAddress& ext_ip) {
|
|
return nats_.Get(ext_ip);
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::AddTranslator(
|
|
const SocketAddress& ext_ip, const SocketAddress& int_ip, NATType type) {
|
|
// Fail if a translator already exists with this extternal address.
|
|
if (nats_.Get(ext_ip))
|
|
return NULL;
|
|
|
|
return nats_.Add(ext_ip, new Translator(this, type, int_ip, server_, ext_ip));
|
|
}
|
|
|
|
void NATSocketServer::RemoveTranslator(
|
|
const SocketAddress& ext_ip) {
|
|
nats_.Remove(ext_ip);
|
|
}
|
|
|
|
Socket* NATSocketServer::CreateSocket(int type) {
|
|
return CreateSocket(AF_INET, type);
|
|
}
|
|
|
|
Socket* NATSocketServer::CreateSocket(int family, int type) {
|
|
return new NATSocket(this, family, type);
|
|
}
|
|
|
|
AsyncSocket* NATSocketServer::CreateAsyncSocket(int type) {
|
|
return CreateAsyncSocket(AF_INET, type);
|
|
}
|
|
|
|
AsyncSocket* NATSocketServer::CreateAsyncSocket(int family, int type) {
|
|
return new NATSocket(this, family, type);
|
|
}
|
|
|
|
void NATSocketServer::SetMessageQueue(MessageQueue* queue) {
|
|
msg_queue_ = queue;
|
|
server_->SetMessageQueue(queue);
|
|
}
|
|
|
|
bool NATSocketServer::Wait(int cms, bool process_io) {
|
|
return server_->Wait(cms, process_io);
|
|
}
|
|
|
|
void NATSocketServer::WakeUp() {
|
|
server_->WakeUp();
|
|
}
|
|
|
|
AsyncSocket* NATSocketServer::CreateInternalSocket(int family, int type,
|
|
const SocketAddress& local_addr, SocketAddress* nat_addr) {
|
|
AsyncSocket* socket = NULL;
|
|
Translator* nat = nats_.FindClient(local_addr);
|
|
if (nat) {
|
|
socket = nat->internal_factory()->CreateAsyncSocket(family, type);
|
|
*nat_addr = (type == SOCK_STREAM) ?
|
|
nat->internal_tcp_address() : nat->internal_udp_address();
|
|
} else {
|
|
socket = server_->CreateAsyncSocket(family, type);
|
|
}
|
|
return socket;
|
|
}
|
|
|
|
// NATSocketServer::Translator
|
|
NATSocketServer::Translator::Translator(
|
|
NATSocketServer* server, NATType type, const SocketAddress& int_ip,
|
|
SocketFactory* ext_factory, const SocketAddress& ext_ip)
|
|
: server_(server) {
|
|
// Create a new private network, and a NATServer running on the private
|
|
// network that bridges to the external network. Also tell the private
|
|
// network to use the same message queue as us.
|
|
VirtualSocketServer* internal_server = new VirtualSocketServer(server_);
|
|
internal_server->SetMessageQueue(server_->queue());
|
|
internal_factory_.reset(internal_server);
|
|
nat_server_.reset(new NATServer(type, internal_server, int_ip, int_ip,
|
|
ext_factory, ext_ip));
|
|
}
|
|
|
|
NATSocketServer::Translator::~Translator() = default;
|
|
|
|
NATSocketServer::Translator* NATSocketServer::Translator::GetTranslator(
|
|
const SocketAddress& ext_ip) {
|
|
return nats_.Get(ext_ip);
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::Translator::AddTranslator(
|
|
const SocketAddress& ext_ip, const SocketAddress& int_ip, NATType type) {
|
|
// Fail if a translator already exists with this extternal address.
|
|
if (nats_.Get(ext_ip))
|
|
return NULL;
|
|
|
|
AddClient(ext_ip);
|
|
return nats_.Add(ext_ip,
|
|
new Translator(server_, type, int_ip, server_, ext_ip));
|
|
}
|
|
void NATSocketServer::Translator::RemoveTranslator(
|
|
const SocketAddress& ext_ip) {
|
|
nats_.Remove(ext_ip);
|
|
RemoveClient(ext_ip);
|
|
}
|
|
|
|
bool NATSocketServer::Translator::AddClient(
|
|
const SocketAddress& int_ip) {
|
|
// Fail if a client already exists with this internal address.
|
|
if (clients_.find(int_ip) != clients_.end())
|
|
return false;
|
|
|
|
clients_.insert(int_ip);
|
|
return true;
|
|
}
|
|
|
|
void NATSocketServer::Translator::RemoveClient(
|
|
const SocketAddress& int_ip) {
|
|
std::set<SocketAddress>::iterator it = clients_.find(int_ip);
|
|
if (it != clients_.end()) {
|
|
clients_.erase(it);
|
|
}
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::Translator::FindClient(
|
|
const SocketAddress& int_ip) {
|
|
// See if we have the requested IP, or any of our children do.
|
|
return (clients_.find(int_ip) != clients_.end()) ?
|
|
this : nats_.FindClient(int_ip);
|
|
}
|
|
|
|
// NATSocketServer::TranslatorMap
|
|
NATSocketServer::TranslatorMap::~TranslatorMap() {
|
|
for (TranslatorMap::iterator it = begin(); it != end(); ++it) {
|
|
delete it->second;
|
|
}
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::TranslatorMap::Get(
|
|
const SocketAddress& ext_ip) {
|
|
TranslatorMap::iterator it = find(ext_ip);
|
|
return (it != end()) ? it->second : NULL;
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::TranslatorMap::Add(
|
|
const SocketAddress& ext_ip, Translator* nat) {
|
|
(*this)[ext_ip] = nat;
|
|
return nat;
|
|
}
|
|
|
|
void NATSocketServer::TranslatorMap::Remove(
|
|
const SocketAddress& ext_ip) {
|
|
TranslatorMap::iterator it = find(ext_ip);
|
|
if (it != end()) {
|
|
delete it->second;
|
|
erase(it);
|
|
}
|
|
}
|
|
|
|
NATSocketServer::Translator* NATSocketServer::TranslatorMap::FindClient(
|
|
const SocketAddress& int_ip) {
|
|
Translator* nat = NULL;
|
|
for (TranslatorMap::iterator it = begin(); it != end() && !nat; ++it) {
|
|
nat = it->second->FindClient(int_ip);
|
|
}
|
|
return nat;
|
|
}
|
|
|
|
} // namespace rtc
|