458 lines
14 KiB
C++
458 lines
14 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/base/win32.h"
|
|
|
|
#include <winsock2.h>
|
|
#include <ws2tcpip.h>
|
|
#include <algorithm>
|
|
|
|
#include "webrtc/base/arraysize.h"
|
|
#include "webrtc/base/basictypes.h"
|
|
#include "webrtc/base/byteorder.h"
|
|
#include "webrtc/base/common.h"
|
|
#include "webrtc/base/logging.h"
|
|
|
|
namespace rtc {
|
|
|
|
// Helper function declarations for inet_ntop/inet_pton.
|
|
static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
|
|
static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
|
|
static int inet_pton_v4(const char* src, void* dst);
|
|
static int inet_pton_v6(const char* src, void* dst);
|
|
|
|
// Implementation of inet_ntop (create a printable representation of an
|
|
// ip address). XP doesn't have its own inet_ntop, and
|
|
// WSAAddressToString requires both IPv6 to be installed and for Winsock
|
|
// to be initialized.
|
|
const char* win32_inet_ntop(int af, const void *src,
|
|
char* dst, socklen_t size) {
|
|
if (!src || !dst) {
|
|
return NULL;
|
|
}
|
|
switch (af) {
|
|
case AF_INET: {
|
|
return inet_ntop_v4(src, dst, size);
|
|
}
|
|
case AF_INET6: {
|
|
return inet_ntop_v6(src, dst, size);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// As above, but for inet_pton. Implements inet_pton for v4 and v6.
|
|
// Note that our inet_ntop will output normal 'dotted' v4 addresses only.
|
|
int win32_inet_pton(int af, const char* src, void* dst) {
|
|
if (!src || !dst) {
|
|
return 0;
|
|
}
|
|
if (af == AF_INET) {
|
|
return inet_pton_v4(src, dst);
|
|
} else if (af == AF_INET6) {
|
|
return inet_pton_v6(src, dst);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Helper function for inet_ntop for IPv4 addresses.
|
|
// Outputs "dotted-quad" decimal notation.
|
|
const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
|
|
if (size < INET_ADDRSTRLEN) {
|
|
return NULL;
|
|
}
|
|
const struct in_addr* as_in_addr =
|
|
reinterpret_cast<const struct in_addr*>(src);
|
|
rtc::sprintfn(dst, size, "%d.%d.%d.%d",
|
|
as_in_addr->S_un.S_un_b.s_b1,
|
|
as_in_addr->S_un.S_un_b.s_b2,
|
|
as_in_addr->S_un.S_un_b.s_b3,
|
|
as_in_addr->S_un.S_un_b.s_b4);
|
|
return dst;
|
|
}
|
|
|
|
// Helper function for inet_ntop for IPv6 addresses.
|
|
const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
|
|
if (size < INET6_ADDRSTRLEN) {
|
|
return NULL;
|
|
}
|
|
const uint16_t* as_shorts = reinterpret_cast<const uint16_t*>(src);
|
|
int runpos[8];
|
|
int current = 1;
|
|
int max = 0;
|
|
int maxpos = -1;
|
|
int run_array_size = arraysize(runpos);
|
|
// Run over the address marking runs of 0s.
|
|
for (int i = 0; i < run_array_size; ++i) {
|
|
if (as_shorts[i] == 0) {
|
|
runpos[i] = current;
|
|
if (current > max) {
|
|
maxpos = i;
|
|
max = current;
|
|
}
|
|
++current;
|
|
} else {
|
|
runpos[i] = -1;
|
|
current = 1;
|
|
}
|
|
}
|
|
|
|
if (max > 0) {
|
|
int tmpmax = maxpos;
|
|
// Run back through, setting -1 for all but the longest run.
|
|
for (int i = run_array_size - 1; i >= 0; i--) {
|
|
if (i > tmpmax) {
|
|
runpos[i] = -1;
|
|
} else if (runpos[i] == -1) {
|
|
// We're less than maxpos, we hit a -1, so the 'good' run is done.
|
|
// Setting tmpmax -1 means all remaining positions get set to -1.
|
|
tmpmax = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
char* cursor = dst;
|
|
// Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
|
|
// These addresses have an initial run of either eight zero-bytes followed
|
|
// by 0xFFFF, or an initial run of ten zero-bytes.
|
|
if (runpos[0] == 1 && (maxpos == 5 ||
|
|
(maxpos == 4 && as_shorts[5] == 0xFFFF))) {
|
|
*cursor++ = ':';
|
|
*cursor++ = ':';
|
|
if (maxpos == 4) {
|
|
cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
|
|
}
|
|
const struct in_addr* as_v4 =
|
|
reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
|
|
inet_ntop_v4(as_v4, cursor,
|
|
static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
|
|
} else {
|
|
for (int i = 0; i < run_array_size; ++i) {
|
|
if (runpos[i] == -1) {
|
|
cursor += rtc::sprintfn(cursor,
|
|
INET6_ADDRSTRLEN - (cursor - dst),
|
|
"%x", NetworkToHost16(as_shorts[i]));
|
|
if (i != 7 && runpos[i + 1] != 1) {
|
|
*cursor++ = ':';
|
|
}
|
|
} else if (runpos[i] == 1) {
|
|
// Entered the run; print the colons and skip the run.
|
|
*cursor++ = ':';
|
|
*cursor++ = ':';
|
|
i += (max - 1);
|
|
}
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
// Helper function for inet_pton for IPv4 addresses.
|
|
// |src| points to a character string containing an IPv4 network address in
|
|
// dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
|
|
// of up to three digits in the range 0 to 255.
|
|
// The address is converted and copied to dst,
|
|
// which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
|
|
int inet_pton_v4(const char* src, void* dst) {
|
|
const int kIpv4AddressSize = 4;
|
|
int found = 0;
|
|
const char* src_pos = src;
|
|
unsigned char result[kIpv4AddressSize] = {0};
|
|
|
|
while (*src_pos != '\0') {
|
|
// strtol won't treat whitespace characters in the begining as an error,
|
|
// so check to ensure this is started with digit before passing to strtol.
|
|
if (!isdigit(*src_pos)) {
|
|
return 0;
|
|
}
|
|
char* end_pos;
|
|
long value = strtol(src_pos, &end_pos, 10);
|
|
if (value < 0 || value > 255 || src_pos == end_pos) {
|
|
return 0;
|
|
}
|
|
++found;
|
|
if (found > kIpv4AddressSize) {
|
|
return 0;
|
|
}
|
|
result[found - 1] = static_cast<unsigned char>(value);
|
|
src_pos = end_pos;
|
|
if (*src_pos == '.') {
|
|
// There's more.
|
|
++src_pos;
|
|
} else if (*src_pos != '\0') {
|
|
// If it's neither '.' nor '\0' then return fail.
|
|
return 0;
|
|
}
|
|
}
|
|
if (found != kIpv4AddressSize) {
|
|
return 0;
|
|
}
|
|
memcpy(dst, result, sizeof(result));
|
|
return 1;
|
|
}
|
|
|
|
// Helper function for inet_pton for IPv6 addresses.
|
|
int inet_pton_v6(const char* src, void* dst) {
|
|
// sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
|
|
// Check for literal x in the input string.
|
|
const char* readcursor = src;
|
|
char c = *readcursor++;
|
|
while (c) {
|
|
if (c == 'x') {
|
|
return 0;
|
|
}
|
|
c = *readcursor++;
|
|
}
|
|
readcursor = src;
|
|
|
|
struct in6_addr an_addr;
|
|
memset(&an_addr, 0, sizeof(an_addr));
|
|
|
|
uint16_t* addr_cursor = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[0]);
|
|
uint16_t* addr_end = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[16]);
|
|
bool seencompressed = false;
|
|
|
|
// Addresses that start with "::" (i.e., a run of initial zeros) or
|
|
// "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
|
|
// These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
|
|
if (*readcursor == ':' && *(readcursor+1) == ':' &&
|
|
*(readcursor + 2) != 0) {
|
|
// Check for periods, which we'll take as a sign of v4 addresses.
|
|
const char* addrstart = readcursor + 2;
|
|
if (rtc::strchr(addrstart, ".")) {
|
|
const char* colon = rtc::strchr(addrstart, "::");
|
|
if (colon) {
|
|
uint16_t a_short;
|
|
int bytesread = 0;
|
|
if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
|
|
a_short != 0xFFFF || bytesread != 4) {
|
|
// Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
|
|
return 0;
|
|
} else {
|
|
an_addr.s6_addr[10] = 0xFF;
|
|
an_addr.s6_addr[11] = 0xFF;
|
|
addrstart = colon + 1;
|
|
}
|
|
}
|
|
struct in_addr v4;
|
|
if (inet_pton_v4(addrstart, &v4.s_addr)) {
|
|
memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
|
|
memcpy(dst, &an_addr, sizeof(an_addr));
|
|
return 1;
|
|
} else {
|
|
// Invalid v4 address.
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
|
|
while (*readcursor != 0 && addr_cursor < addr_end) {
|
|
if (*readcursor == ':') {
|
|
if (*(readcursor + 1) == ':') {
|
|
if (seencompressed) {
|
|
// Can only have one compressed run of zeroes ("::") per address.
|
|
return 0;
|
|
}
|
|
// Hit a compressed run. Count colons to figure out how much of the
|
|
// address is skipped.
|
|
readcursor += 2;
|
|
const char* coloncounter = readcursor;
|
|
int coloncount = 0;
|
|
if (*coloncounter == 0) {
|
|
// Special case - trailing ::.
|
|
addr_cursor = addr_end;
|
|
} else {
|
|
while (*coloncounter) {
|
|
if (*coloncounter == ':') {
|
|
++coloncount;
|
|
}
|
|
++coloncounter;
|
|
}
|
|
// (coloncount + 1) is the number of shorts left in the address.
|
|
addr_cursor = addr_end - (coloncount + 1);
|
|
seencompressed = true;
|
|
}
|
|
} else {
|
|
++readcursor;
|
|
}
|
|
} else {
|
|
uint16_t word;
|
|
int bytesread = 0;
|
|
if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) {
|
|
return 0;
|
|
} else {
|
|
*addr_cursor = HostToNetwork16(word);
|
|
++addr_cursor;
|
|
readcursor += bytesread;
|
|
if (*readcursor != ':' && *readcursor != '\0') {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (*readcursor != '\0' || addr_cursor < addr_end) {
|
|
// Catches addresses too short or too long.
|
|
return 0;
|
|
}
|
|
memcpy(dst, &an_addr, sizeof(an_addr));
|
|
return 1;
|
|
}
|
|
|
|
//
|
|
// Unix time is in seconds relative to 1/1/1970. So we compute the windows
|
|
// FILETIME of that time/date, then we add/subtract in appropriate units to
|
|
// convert to/from unix time.
|
|
// The units of FILETIME are 100ns intervals, so by multiplying by or dividing
|
|
// by 10000000, we can convert to/from seconds.
|
|
//
|
|
// FileTime = UnixTime*10000000 + FileTime(1970)
|
|
// UnixTime = (FileTime-FileTime(1970))/10000000
|
|
//
|
|
|
|
void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) {
|
|
ASSERT(NULL != ut);
|
|
|
|
// FILETIME has an earlier date base than time_t (1/1/1970), so subtract off
|
|
// the difference.
|
|
SYSTEMTIME base_st;
|
|
memset(&base_st, 0, sizeof(base_st));
|
|
base_st.wDay = 1;
|
|
base_st.wMonth = 1;
|
|
base_st.wYear = 1970;
|
|
|
|
FILETIME base_ft;
|
|
SystemTimeToFileTime(&base_st, &base_ft);
|
|
|
|
ULARGE_INTEGER base_ul, current_ul;
|
|
memcpy(&base_ul, &base_ft, sizeof(FILETIME));
|
|
memcpy(¤t_ul, &ft, sizeof(FILETIME));
|
|
|
|
// Divide by big number to convert to seconds, then subtract out the 1970
|
|
// base date value.
|
|
const ULONGLONG RATIO = 10000000;
|
|
*ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO);
|
|
}
|
|
|
|
void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) {
|
|
ASSERT(NULL != ft);
|
|
|
|
// FILETIME has an earlier date base than time_t (1/1/1970), so add in
|
|
// the difference.
|
|
SYSTEMTIME base_st;
|
|
memset(&base_st, 0, sizeof(base_st));
|
|
base_st.wDay = 1;
|
|
base_st.wMonth = 1;
|
|
base_st.wYear = 1970;
|
|
|
|
FILETIME base_ft;
|
|
SystemTimeToFileTime(&base_st, &base_ft);
|
|
|
|
ULARGE_INTEGER base_ul;
|
|
memcpy(&base_ul, &base_ft, sizeof(FILETIME));
|
|
|
|
// Multiply by big number to convert to 100ns units, then add in the 1970
|
|
// base date value.
|
|
const ULONGLONG RATIO = 10000000;
|
|
ULARGE_INTEGER current_ul;
|
|
current_ul.QuadPart = base_ul.QuadPart + static_cast<int64_t>(ut) * RATIO;
|
|
memcpy(ft, ¤t_ul, sizeof(FILETIME));
|
|
}
|
|
|
|
bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
|
|
// TODO: Integrate into fileutils.h
|
|
// TODO: Handle wide and non-wide cases via TCHAR?
|
|
// TODO: Skip \\?\ processing if the length is not > MAX_PATH?
|
|
// TODO: Write unittests
|
|
|
|
// Convert to Utf16
|
|
int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
|
|
static_cast<int>(utf8.length() + 1), NULL,
|
|
0);
|
|
if (0 == wlen) {
|
|
return false;
|
|
}
|
|
wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
|
|
if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
|
|
static_cast<int>(utf8.length() + 1),
|
|
wfilename, wlen)) {
|
|
return false;
|
|
}
|
|
// Replace forward slashes with backslashes
|
|
std::replace(wfilename, wfilename + wlen, L'/', L'\\');
|
|
// Convert to complete filename
|
|
DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL);
|
|
if (0 == full_len) {
|
|
return false;
|
|
}
|
|
wchar_t* filepart = NULL;
|
|
wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
|
|
wchar_t* start = full_filename + 6;
|
|
if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
|
|
return false;
|
|
}
|
|
// Add long-path prefix
|
|
const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
|
|
if ((start[0] != L'\\') || (start[1] != L'\\')) {
|
|
// Non-unc path: <pathname>
|
|
// Becomes: \\?\<pathname>
|
|
start -= 4;
|
|
ASSERT(start >= full_filename);
|
|
memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
|
|
} else if (start[2] != L'?') {
|
|
// Unc path: \\<server>\<pathname>
|
|
// Becomes: \\?\UNC\<server>\<pathname>
|
|
start -= 6;
|
|
ASSERT(start >= full_filename);
|
|
memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
|
|
} else {
|
|
// Already in long-path form.
|
|
}
|
|
filename->assign(start);
|
|
return true;
|
|
}
|
|
|
|
bool GetOsVersion(int* major, int* minor, int* build) {
|
|
OSVERSIONINFO info = {0};
|
|
info.dwOSVersionInfoSize = sizeof(info);
|
|
if (GetVersionEx(&info)) {
|
|
if (major) *major = info.dwMajorVersion;
|
|
if (minor) *minor = info.dwMinorVersion;
|
|
if (build) *build = info.dwBuildNumber;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool GetCurrentProcessIntegrityLevel(int* level) {
|
|
bool ret = false;
|
|
HANDLE process = ::GetCurrentProcess(), token;
|
|
if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
|
|
DWORD size;
|
|
if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) &&
|
|
GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
|
|
|
|
char* buf = STACK_ARRAY(char, size);
|
|
TOKEN_MANDATORY_LABEL* til =
|
|
reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
|
|
if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
|
|
|
|
DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
|
|
*level = *GetSidSubAuthority(til->Label.Sid, count - 1);
|
|
ret = true;
|
|
}
|
|
}
|
|
CloseHandle(token);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
} // namespace rtc
|