564 lines
23 KiB
C++
564 lines
23 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "webrtc/video/stream_synchronization.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// These correspond to the same constants defined in vie_sync_module.cc.
|
|
enum { kMaxVideoDiffMs = 80 };
|
|
enum { kMaxAudioDiffMs = 80 };
|
|
enum { kMaxDelay = 1500 };
|
|
|
|
// Test constants.
|
|
enum { kDefaultAudioFrequency = 8000 };
|
|
enum { kDefaultVideoFrequency = 90000 };
|
|
const double kNtpFracPerMs = 4.294967296E6;
|
|
static const int kSmoothingFilter = 4 * 2;
|
|
|
|
class Time {
|
|
public:
|
|
explicit Time(int64_t offset)
|
|
: kNtpJan1970(2208988800UL),
|
|
time_now_ms_(offset) {}
|
|
|
|
RtcpMeasurement GenerateRtcp(int frequency, uint32_t offset) const {
|
|
RtcpMeasurement rtcp;
|
|
NowNtp(&rtcp.ntp_secs, &rtcp.ntp_frac);
|
|
rtcp.rtp_timestamp = NowRtp(frequency, offset);
|
|
return rtcp;
|
|
}
|
|
|
|
void NowNtp(uint32_t* ntp_secs, uint32_t* ntp_frac) const {
|
|
*ntp_secs = time_now_ms_ / 1000 + kNtpJan1970;
|
|
int64_t remainder_ms = time_now_ms_ % 1000;
|
|
*ntp_frac = static_cast<uint32_t>(
|
|
static_cast<double>(remainder_ms) * kNtpFracPerMs + 0.5);
|
|
}
|
|
|
|
uint32_t NowRtp(int frequency, uint32_t offset) const {
|
|
return frequency * time_now_ms_ / 1000 + offset;
|
|
}
|
|
|
|
void IncreaseTimeMs(int64_t inc) {
|
|
time_now_ms_ += inc;
|
|
}
|
|
|
|
int64_t time_now_ms() const {
|
|
return time_now_ms_;
|
|
}
|
|
|
|
private:
|
|
// January 1970, in NTP seconds.
|
|
const uint32_t kNtpJan1970;
|
|
int64_t time_now_ms_;
|
|
};
|
|
|
|
class StreamSynchronizationTest : public ::testing::Test {
|
|
protected:
|
|
virtual void SetUp() {
|
|
sync_ = new StreamSynchronization(0, 0);
|
|
send_time_ = new Time(kSendTimeOffsetMs);
|
|
receive_time_ = new Time(kReceiveTimeOffsetMs);
|
|
audio_clock_drift_ = 1.0;
|
|
video_clock_drift_ = 1.0;
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
delete sync_;
|
|
delete send_time_;
|
|
delete receive_time_;
|
|
}
|
|
|
|
// Generates the necessary RTCP measurements and RTP timestamps and computes
|
|
// the audio and video delays needed to get the two streams in sync.
|
|
// |audio_delay_ms| and |video_delay_ms| are the number of milliseconds after
|
|
// capture which the frames are rendered.
|
|
// |current_audio_delay_ms| is the number of milliseconds which audio is
|
|
// currently being delayed by the receiver.
|
|
bool DelayedStreams(int audio_delay_ms,
|
|
int video_delay_ms,
|
|
int current_audio_delay_ms,
|
|
int* extra_audio_delay_ms,
|
|
int* total_video_delay_ms) {
|
|
int audio_frequency = static_cast<int>(kDefaultAudioFrequency *
|
|
audio_clock_drift_ + 0.5);
|
|
int audio_offset = 0;
|
|
int video_frequency = static_cast<int>(kDefaultVideoFrequency *
|
|
video_clock_drift_ + 0.5);
|
|
int video_offset = 0;
|
|
StreamSynchronization::Measurements audio;
|
|
StreamSynchronization::Measurements video;
|
|
// Generate NTP/RTP timestamp pair for both streams corresponding to RTCP.
|
|
audio.rtcp.push_front(send_time_->GenerateRtcp(audio_frequency,
|
|
audio_offset));
|
|
send_time_->IncreaseTimeMs(100);
|
|
receive_time_->IncreaseTimeMs(100);
|
|
video.rtcp.push_front(send_time_->GenerateRtcp(video_frequency,
|
|
video_offset));
|
|
send_time_->IncreaseTimeMs(900);
|
|
receive_time_->IncreaseTimeMs(900);
|
|
audio.rtcp.push_front(send_time_->GenerateRtcp(audio_frequency,
|
|
audio_offset));
|
|
send_time_->IncreaseTimeMs(100);
|
|
receive_time_->IncreaseTimeMs(100);
|
|
video.rtcp.push_front(send_time_->GenerateRtcp(video_frequency,
|
|
video_offset));
|
|
send_time_->IncreaseTimeMs(900);
|
|
receive_time_->IncreaseTimeMs(900);
|
|
|
|
// Capture an audio and a video frame at the same time.
|
|
audio.latest_timestamp = send_time_->NowRtp(audio_frequency,
|
|
audio_offset);
|
|
video.latest_timestamp = send_time_->NowRtp(video_frequency,
|
|
video_offset);
|
|
|
|
if (audio_delay_ms > video_delay_ms) {
|
|
// Audio later than video.
|
|
receive_time_->IncreaseTimeMs(video_delay_ms);
|
|
video.latest_receive_time_ms = receive_time_->time_now_ms();
|
|
receive_time_->IncreaseTimeMs(audio_delay_ms - video_delay_ms);
|
|
audio.latest_receive_time_ms = receive_time_->time_now_ms();
|
|
} else {
|
|
// Video later than audio.
|
|
receive_time_->IncreaseTimeMs(audio_delay_ms);
|
|
audio.latest_receive_time_ms = receive_time_->time_now_ms();
|
|
receive_time_->IncreaseTimeMs(video_delay_ms - audio_delay_ms);
|
|
video.latest_receive_time_ms = receive_time_->time_now_ms();
|
|
}
|
|
int relative_delay_ms;
|
|
StreamSynchronization::ComputeRelativeDelay(audio, video,
|
|
&relative_delay_ms);
|
|
EXPECT_EQ(video_delay_ms - audio_delay_ms, relative_delay_ms);
|
|
return sync_->ComputeDelays(relative_delay_ms,
|
|
current_audio_delay_ms,
|
|
extra_audio_delay_ms,
|
|
total_video_delay_ms);
|
|
}
|
|
|
|
// Simulate audio playback 300 ms after capture and video rendering 100 ms
|
|
// after capture. Verify that the correct extra delays are calculated for
|
|
// audio and video, and that they change correctly when we simulate that
|
|
// NetEQ or the VCM adds more delay to the streams.
|
|
// TODO(holmer): This is currently wrong! We should simply change
|
|
// audio_delay_ms or video_delay_ms since those now include VCM and NetEQ
|
|
// delays.
|
|
void BothDelayedAudioLaterTest(int base_target_delay) {
|
|
int current_audio_delay_ms = base_target_delay;
|
|
int audio_delay_ms = base_target_delay + 300;
|
|
int video_delay_ms = base_target_delay + 100;
|
|
int extra_audio_delay_ms = 0;
|
|
int total_video_delay_ms = base_target_delay;
|
|
int filtered_move = (audio_delay_ms - video_delay_ms) / kSmoothingFilter;
|
|
const int kNeteqDelayIncrease = 50;
|
|
const int kNeteqDelayDecrease = 10;
|
|
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay + filtered_move, total_video_delay_ms);
|
|
EXPECT_EQ(base_target_delay, extra_audio_delay_ms);
|
|
current_audio_delay_ms = extra_audio_delay_ms;
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(1000 - std::max(audio_delay_ms,
|
|
video_delay_ms));
|
|
// Simulate base_target_delay minimum delay in the VCM.
|
|
total_video_delay_ms = base_target_delay;
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay + 2 * filtered_move, total_video_delay_ms);
|
|
EXPECT_EQ(base_target_delay, extra_audio_delay_ms);
|
|
current_audio_delay_ms = extra_audio_delay_ms;
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(1000 - std::max(audio_delay_ms,
|
|
video_delay_ms));
|
|
// Simulate base_target_delay minimum delay in the VCM.
|
|
total_video_delay_ms = base_target_delay;
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay + 3 * filtered_move, total_video_delay_ms);
|
|
EXPECT_EQ(base_target_delay, extra_audio_delay_ms);
|
|
|
|
// Simulate that NetEQ introduces some audio delay.
|
|
current_audio_delay_ms = base_target_delay + kNeteqDelayIncrease;
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(1000 - std::max(audio_delay_ms,
|
|
video_delay_ms));
|
|
// Simulate base_target_delay minimum delay in the VCM.
|
|
total_video_delay_ms = base_target_delay;
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
filtered_move = 3 * filtered_move +
|
|
(kNeteqDelayIncrease + audio_delay_ms - video_delay_ms) /
|
|
kSmoothingFilter;
|
|
EXPECT_EQ(base_target_delay + filtered_move, total_video_delay_ms);
|
|
EXPECT_EQ(base_target_delay, extra_audio_delay_ms);
|
|
|
|
// Simulate that NetEQ reduces its delay.
|
|
current_audio_delay_ms = base_target_delay + kNeteqDelayDecrease;
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(1000 - std::max(audio_delay_ms,
|
|
video_delay_ms));
|
|
// Simulate base_target_delay minimum delay in the VCM.
|
|
total_video_delay_ms = base_target_delay;
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
|
|
filtered_move = filtered_move +
|
|
(kNeteqDelayDecrease + audio_delay_ms - video_delay_ms) /
|
|
kSmoothingFilter;
|
|
|
|
EXPECT_EQ(base_target_delay + filtered_move, total_video_delay_ms);
|
|
EXPECT_EQ(base_target_delay, extra_audio_delay_ms);
|
|
}
|
|
|
|
void BothDelayedVideoLaterTest(int base_target_delay) {
|
|
int current_audio_delay_ms = base_target_delay;
|
|
int audio_delay_ms = base_target_delay + 100;
|
|
int video_delay_ms = base_target_delay + 300;
|
|
int extra_audio_delay_ms = 0;
|
|
int total_video_delay_ms = base_target_delay;
|
|
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than this in 1 second.
|
|
EXPECT_GE(base_target_delay + kMaxAudioDiffMs, extra_audio_delay_ms);
|
|
current_audio_delay_ms = extra_audio_delay_ms;
|
|
int current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than the half of the
|
|
// required change in delay.
|
|
EXPECT_EQ(current_extra_delay_ms + MaxAudioDelayIncrease(
|
|
current_audio_delay_ms,
|
|
base_target_delay + video_delay_ms - audio_delay_ms),
|
|
extra_audio_delay_ms);
|
|
current_audio_delay_ms = extra_audio_delay_ms;
|
|
current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than the half of the
|
|
// required change in delay.
|
|
EXPECT_EQ(current_extra_delay_ms + MaxAudioDelayIncrease(
|
|
current_audio_delay_ms,
|
|
base_target_delay + video_delay_ms - audio_delay_ms),
|
|
extra_audio_delay_ms);
|
|
current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
// Simulate that NetEQ for some reason reduced the delay.
|
|
current_audio_delay_ms = base_target_delay + 10;
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay, total_video_delay_ms);
|
|
// Since we only can ask NetEQ for a certain amount of extra delay, and
|
|
// we only measure the total NetEQ delay, we will ask for additional delay
|
|
// here to try to stay in sync.
|
|
EXPECT_EQ(current_extra_delay_ms + MaxAudioDelayIncrease(
|
|
current_audio_delay_ms,
|
|
base_target_delay + video_delay_ms - audio_delay_ms),
|
|
extra_audio_delay_ms);
|
|
current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
// Simulate that NetEQ for some reason significantly increased the delay.
|
|
current_audio_delay_ms = base_target_delay + 350;
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(audio_delay_ms,
|
|
video_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms,
|
|
&total_video_delay_ms));
|
|
EXPECT_EQ(base_target_delay, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than the half of the
|
|
// required change in delay.
|
|
EXPECT_EQ(current_extra_delay_ms + MaxAudioDelayIncrease(
|
|
current_audio_delay_ms,
|
|
base_target_delay + video_delay_ms - audio_delay_ms),
|
|
extra_audio_delay_ms);
|
|
}
|
|
|
|
int MaxAudioDelayIncrease(int current_audio_delay_ms, int delay_ms) {
|
|
return std::min((delay_ms - current_audio_delay_ms) / kSmoothingFilter,
|
|
static_cast<int>(kMaxAudioDiffMs));
|
|
}
|
|
|
|
int MaxAudioDelayDecrease(int current_audio_delay_ms, int delay_ms) {
|
|
return std::max((delay_ms - current_audio_delay_ms) / kSmoothingFilter,
|
|
-kMaxAudioDiffMs);
|
|
}
|
|
|
|
enum { kSendTimeOffsetMs = 98765 };
|
|
enum { kReceiveTimeOffsetMs = 43210 };
|
|
|
|
StreamSynchronization* sync_;
|
|
Time* send_time_; // The simulated clock at the sender.
|
|
Time* receive_time_; // The simulated clock at the receiver.
|
|
double audio_clock_drift_;
|
|
double video_clock_drift_;
|
|
};
|
|
|
|
TEST_F(StreamSynchronizationTest, NoDelay) {
|
|
uint32_t current_audio_delay_ms = 0;
|
|
int extra_audio_delay_ms = 0;
|
|
int total_video_delay_ms = 0;
|
|
|
|
EXPECT_FALSE(DelayedStreams(0, 0, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, extra_audio_delay_ms);
|
|
EXPECT_EQ(0, total_video_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, VideoDelay) {
|
|
uint32_t current_audio_delay_ms = 0;
|
|
int delay_ms = 200;
|
|
int extra_audio_delay_ms = 0;
|
|
int total_video_delay_ms = 0;
|
|
|
|
EXPECT_TRUE(DelayedStreams(delay_ms, 0, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, extra_audio_delay_ms);
|
|
// The video delay is not allowed to change more than this in 1 second.
|
|
EXPECT_EQ(delay_ms / kSmoothingFilter, total_video_delay_ms);
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
// Simulate 0 minimum delay in the VCM.
|
|
total_video_delay_ms = 0;
|
|
EXPECT_TRUE(DelayedStreams(delay_ms, 0, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, extra_audio_delay_ms);
|
|
// The video delay is not allowed to change more than this in 1 second.
|
|
EXPECT_EQ(2 * delay_ms / kSmoothingFilter, total_video_delay_ms);
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
// Simulate 0 minimum delay in the VCM.
|
|
total_video_delay_ms = 0;
|
|
EXPECT_TRUE(DelayedStreams(delay_ms, 0, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, extra_audio_delay_ms);
|
|
EXPECT_EQ(3 * delay_ms / kSmoothingFilter, total_video_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, AudioDelay) {
|
|
int current_audio_delay_ms = 0;
|
|
int delay_ms = 200;
|
|
int extra_audio_delay_ms = 0;
|
|
int total_video_delay_ms = 0;
|
|
|
|
EXPECT_TRUE(DelayedStreams(0, delay_ms, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than this in 1 second.
|
|
EXPECT_EQ(delay_ms / kSmoothingFilter, extra_audio_delay_ms);
|
|
current_audio_delay_ms = extra_audio_delay_ms;
|
|
int current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(0, delay_ms, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than the half of the required
|
|
// change in delay.
|
|
EXPECT_EQ(current_extra_delay_ms +
|
|
MaxAudioDelayIncrease(current_audio_delay_ms, delay_ms),
|
|
extra_audio_delay_ms);
|
|
current_audio_delay_ms = extra_audio_delay_ms;
|
|
current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(0, delay_ms, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than the half of the required
|
|
// change in delay.
|
|
EXPECT_EQ(current_extra_delay_ms +
|
|
MaxAudioDelayIncrease(current_audio_delay_ms, delay_ms),
|
|
extra_audio_delay_ms);
|
|
current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
// Simulate that NetEQ for some reason reduced the delay.
|
|
current_audio_delay_ms = 10;
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(0, delay_ms, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, total_video_delay_ms);
|
|
// Since we only can ask NetEQ for a certain amount of extra delay, and
|
|
// we only measure the total NetEQ delay, we will ask for additional delay
|
|
// here to try to
|
|
EXPECT_EQ(current_extra_delay_ms +
|
|
MaxAudioDelayIncrease(current_audio_delay_ms, delay_ms),
|
|
extra_audio_delay_ms);
|
|
current_extra_delay_ms = extra_audio_delay_ms;
|
|
|
|
// Simulate that NetEQ for some reason significantly increased the delay.
|
|
current_audio_delay_ms = 350;
|
|
send_time_->IncreaseTimeMs(1000);
|
|
receive_time_->IncreaseTimeMs(800);
|
|
EXPECT_TRUE(DelayedStreams(0, delay_ms, current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
EXPECT_EQ(0, total_video_delay_ms);
|
|
// The audio delay is not allowed to change more than the half of the required
|
|
// change in delay.
|
|
EXPECT_EQ(current_extra_delay_ms +
|
|
MaxAudioDelayDecrease(current_audio_delay_ms, delay_ms),
|
|
extra_audio_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedVideoLater) {
|
|
BothDelayedVideoLaterTest(0);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedVideoLaterAudioClockDrift) {
|
|
audio_clock_drift_ = 1.05;
|
|
BothDelayedVideoLaterTest(0);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedVideoLaterVideoClockDrift) {
|
|
video_clock_drift_ = 1.05;
|
|
BothDelayedVideoLaterTest(0);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedAudioLater) {
|
|
BothDelayedAudioLaterTest(0);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedAudioClockDrift) {
|
|
audio_clock_drift_ = 1.05;
|
|
BothDelayedAudioLaterTest(0);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedVideoClockDrift) {
|
|
video_clock_drift_ = 1.05;
|
|
BothDelayedAudioLaterTest(0);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BaseDelay) {
|
|
int base_target_delay_ms = 2000;
|
|
int current_audio_delay_ms = 2000;
|
|
int extra_audio_delay_ms = 0;
|
|
int total_video_delay_ms = base_target_delay_ms;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
// We are in sync don't change.
|
|
EXPECT_FALSE(DelayedStreams(base_target_delay_ms, base_target_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
// Triggering another call with the same values. Delay should not be modified.
|
|
base_target_delay_ms = 2000;
|
|
current_audio_delay_ms = base_target_delay_ms;
|
|
total_video_delay_ms = base_target_delay_ms;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
// We are in sync don't change.
|
|
EXPECT_FALSE(DelayedStreams(base_target_delay_ms, base_target_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
// Changing delay value - intended to test this module only. In practice it
|
|
// would take VoE time to adapt.
|
|
base_target_delay_ms = 5000;
|
|
current_audio_delay_ms = base_target_delay_ms;
|
|
total_video_delay_ms = base_target_delay_ms;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
// We are in sync don't change.
|
|
EXPECT_FALSE(DelayedStreams(base_target_delay_ms, base_target_delay_ms,
|
|
current_audio_delay_ms,
|
|
&extra_audio_delay_ms, &total_video_delay_ms));
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedAudioLaterWithBaseDelay) {
|
|
int base_target_delay_ms = 3000;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
BothDelayedAudioLaterTest(base_target_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedAudioClockDriftWithBaseDelay) {
|
|
int base_target_delay_ms = 3000;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
audio_clock_drift_ = 1.05;
|
|
BothDelayedAudioLaterTest(base_target_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedVideoClockDriftWithBaseDelay) {
|
|
int base_target_delay_ms = 3000;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
video_clock_drift_ = 1.05;
|
|
BothDelayedAudioLaterTest(base_target_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest, BothDelayedVideoLaterWithBaseDelay) {
|
|
int base_target_delay_ms = 2000;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
BothDelayedVideoLaterTest(base_target_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest,
|
|
BothDelayedVideoLaterAudioClockDriftWithBaseDelay) {
|
|
int base_target_delay_ms = 2000;
|
|
audio_clock_drift_ = 1.05;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
BothDelayedVideoLaterTest(base_target_delay_ms);
|
|
}
|
|
|
|
TEST_F(StreamSynchronizationTest,
|
|
BothDelayedVideoLaterVideoClockDriftWithBaseDelay) {
|
|
int base_target_delay_ms = 2000;
|
|
video_clock_drift_ = 1.05;
|
|
sync_->SetTargetBufferingDelay(base_target_delay_ms);
|
|
BothDelayedVideoLaterTest(base_target_delay_ms);
|
|
}
|
|
|
|
} // namespace webrtc
|