rhubarb-lip-sync/lib/webrtc-8d2248ff/webrtc/p2p/base/dtlstransportchannel_unitte...

1021 lines
37 KiB
C++

/*
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <set>
#include "webrtc/p2p/base/dtlstransport.h"
#include "webrtc/p2p/base/faketransportcontroller.h"
#include "webrtc/base/common.h"
#include "webrtc/base/dscp.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/ssladapter.h"
#include "webrtc/base/sslidentity.h"
#include "webrtc/base/sslstreamadapter.h"
#include "webrtc/base/stringutils.h"
#define MAYBE_SKIP_TEST(feature) \
if (!(rtc::SSLStreamAdapter::feature())) { \
LOG(LS_INFO) << #feature " feature disabled... skipping"; \
return; \
}
static const char kIceUfrag1[] = "TESTICEUFRAG0001";
static const char kIcePwd1[] = "TESTICEPWD00000000000001";
static const size_t kPacketNumOffset = 8;
static const size_t kPacketHeaderLen = 12;
static const int kFakePacketId = 0x1234;
static const int kTimeout = 10000;
static bool IsRtpLeadByte(uint8_t b) {
return ((b & 0xC0) == 0x80);
}
cricket::TransportDescription MakeTransportDescription(
const rtc::scoped_refptr<rtc::RTCCertificate>& cert,
cricket::ConnectionRole role) {
std::unique_ptr<rtc::SSLFingerprint> fingerprint;
if (cert) {
std::string digest_algorithm;
cert->ssl_certificate().GetSignatureDigestAlgorithm(&digest_algorithm);
fingerprint.reset(
rtc::SSLFingerprint::Create(digest_algorithm, cert->identity()));
}
return cricket::TransportDescription(std::vector<std::string>(), kIceUfrag1,
kIcePwd1, cricket::ICEMODE_FULL, role,
fingerprint.get());
}
using cricket::ConnectionRole;
enum Flags { NF_REOFFER = 0x1, NF_EXPECT_FAILURE = 0x2 };
class DtlsTestClient : public sigslot::has_slots<> {
public:
DtlsTestClient(const std::string& name) : name_(name) {}
void CreateCertificate(rtc::KeyType key_type) {
certificate_ =
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate(name_, key_type)));
}
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate() {
return certificate_;
}
void SetupSrtp() {
ASSERT(certificate_);
use_dtls_srtp_ = true;
}
void SetupMaxProtocolVersion(rtc::SSLProtocolVersion version) {
ASSERT(!transport_);
ssl_max_version_ = version;
}
void SetupChannels(int count, cricket::IceRole role) {
transport_.reset(new cricket::DtlsTransport<cricket::FakeTransport>(
"dtls content name", nullptr, certificate_));
transport_->SetAsync(true);
transport_->SetIceRole(role);
transport_->SetIceTiebreaker(
(role == cricket::ICEROLE_CONTROLLING) ? 1 : 2);
for (int i = 0; i < count; ++i) {
cricket::DtlsTransportChannelWrapper* channel =
static_cast<cricket::DtlsTransportChannelWrapper*>(
transport_->CreateChannel(i));
ASSERT_TRUE(channel != NULL);
channel->SetSslMaxProtocolVersion(ssl_max_version_);
channel->SignalWritableState.connect(this,
&DtlsTestClient::OnTransportChannelWritableState);
channel->SignalReadPacket.connect(this,
&DtlsTestClient::OnTransportChannelReadPacket);
channel->SignalSentPacket.connect(
this, &DtlsTestClient::OnTransportChannelSentPacket);
channels_.push_back(channel);
// Hook the raw packets so that we can verify they are encrypted.
channel->channel()->SignalReadPacket.connect(
this, &DtlsTestClient::OnFakeTransportChannelReadPacket);
}
}
cricket::Transport* transport() { return transport_.get(); }
cricket::FakeTransportChannel* GetFakeChannel(int component) {
cricket::TransportChannelImpl* ch = transport_->GetChannel(component);
cricket::DtlsTransportChannelWrapper* wrapper =
static_cast<cricket::DtlsTransportChannelWrapper*>(ch);
return (wrapper) ?
static_cast<cricket::FakeTransportChannel*>(wrapper->channel()) : NULL;
}
// Offer DTLS if we have an identity; pass in a remote fingerprint only if
// both sides support DTLS.
void Negotiate(DtlsTestClient* peer, cricket::ContentAction action,
ConnectionRole local_role, ConnectionRole remote_role,
int flags) {
Negotiate(certificate_, certificate_ ? peer->certificate_ : nullptr, action,
local_role, remote_role, flags);
}
// Allow any DTLS configuration to be specified (including invalid ones).
void Negotiate(const rtc::scoped_refptr<rtc::RTCCertificate>& local_cert,
const rtc::scoped_refptr<rtc::RTCCertificate>& remote_cert,
cricket::ContentAction action,
ConnectionRole local_role,
ConnectionRole remote_role,
int flags) {
std::unique_ptr<rtc::SSLFingerprint> local_fingerprint;
std::unique_ptr<rtc::SSLFingerprint> remote_fingerprint;
if (local_cert) {
std::string digest_algorithm;
ASSERT_TRUE(local_cert->ssl_certificate().GetSignatureDigestAlgorithm(
&digest_algorithm));
ASSERT_FALSE(digest_algorithm.empty());
local_fingerprint.reset(rtc::SSLFingerprint::Create(
digest_algorithm, local_cert->identity()));
ASSERT_TRUE(local_fingerprint.get() != NULL);
EXPECT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
}
if (remote_cert) {
std::string digest_algorithm;
ASSERT_TRUE(remote_cert->ssl_certificate().GetSignatureDigestAlgorithm(
&digest_algorithm));
ASSERT_FALSE(digest_algorithm.empty());
remote_fingerprint.reset(rtc::SSLFingerprint::Create(
digest_algorithm, remote_cert->identity()));
ASSERT_TRUE(remote_fingerprint.get() != NULL);
EXPECT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
}
if (use_dtls_srtp_ && !(flags & NF_REOFFER)) {
// SRTP ciphers will be set only in the beginning.
for (std::vector<cricket::DtlsTransportChannelWrapper*>::iterator it =
channels_.begin(); it != channels_.end(); ++it) {
std::vector<int> ciphers;
ciphers.push_back(rtc::SRTP_AES128_CM_SHA1_80);
ASSERT_TRUE((*it)->SetSrtpCryptoSuites(ciphers));
}
}
cricket::TransportDescription local_desc(
std::vector<std::string>(), kIceUfrag1, kIcePwd1, cricket::ICEMODE_FULL,
local_role,
// If remote if the offerer and has no DTLS support, answer will be
// without any fingerprint.
(action == cricket::CA_ANSWER && !remote_cert)
? nullptr
: local_fingerprint.get());
cricket::TransportDescription remote_desc(
std::vector<std::string>(), kIceUfrag1, kIcePwd1, cricket::ICEMODE_FULL,
remote_role, remote_fingerprint.get());
bool expect_success = (flags & NF_EXPECT_FAILURE) ? false : true;
// If |expect_success| is false, expect SRTD or SLTD to fail when
// content action is CA_ANSWER.
if (action == cricket::CA_OFFER) {
ASSERT_TRUE(transport_->SetLocalTransportDescription(
local_desc, cricket::CA_OFFER, NULL));
ASSERT_EQ(expect_success, transport_->SetRemoteTransportDescription(
remote_desc, cricket::CA_ANSWER, NULL));
} else {
ASSERT_TRUE(transport_->SetRemoteTransportDescription(
remote_desc, cricket::CA_OFFER, NULL));
ASSERT_EQ(expect_success, transport_->SetLocalTransportDescription(
local_desc, cricket::CA_ANSWER, NULL));
}
negotiated_dtls_ = (local_cert && remote_cert);
}
bool Connect(DtlsTestClient* peer, bool asymmetric) {
transport_->SetDestination(peer->transport_.get(), asymmetric);
return true;
}
bool all_channels_writable() const {
if (channels_.empty()) {
return false;
}
for (cricket::DtlsTransportChannelWrapper* channel : channels_) {
if (!channel->writable()) {
return false;
}
}
return true;
}
bool all_raw_channels_writable() const {
if (channels_.empty()) {
return false;
}
for (cricket::DtlsTransportChannelWrapper* channel : channels_) {
if (!channel->channel()->writable()) {
return false;
}
}
return true;
}
int received_dtls_client_hellos() const {
return received_dtls_client_hellos_;
}
void CheckRole(rtc::SSLRole role) {
if (role == rtc::SSL_CLIENT) {
ASSERT_EQ(0, received_dtls_client_hellos_);
ASSERT_GT(received_dtls_server_hellos_, 0);
} else {
ASSERT_GT(received_dtls_client_hellos_, 0);
ASSERT_EQ(0, received_dtls_server_hellos_);
}
}
void CheckSrtp(int expected_crypto_suite) {
for (std::vector<cricket::DtlsTransportChannelWrapper*>::iterator it =
channels_.begin(); it != channels_.end(); ++it) {
int crypto_suite;
bool rv = (*it)->GetSrtpCryptoSuite(&crypto_suite);
if (negotiated_dtls_ && expected_crypto_suite) {
ASSERT_TRUE(rv);
ASSERT_EQ(crypto_suite, expected_crypto_suite);
} else {
ASSERT_FALSE(rv);
}
}
}
void CheckSsl() {
for (std::vector<cricket::DtlsTransportChannelWrapper*>::iterator it =
channels_.begin(); it != channels_.end(); ++it) {
int cipher;
bool rv = (*it)->GetSslCipherSuite(&cipher);
if (negotiated_dtls_) {
ASSERT_TRUE(rv);
EXPECT_TRUE(
rtc::SSLStreamAdapter::IsAcceptableCipher(cipher, rtc::KT_DEFAULT));
} else {
ASSERT_FALSE(rv);
}
}
}
void SendPackets(size_t channel, size_t size, size_t count, bool srtp) {
ASSERT(channel < channels_.size());
std::unique_ptr<char[]> packet(new char[size]);
size_t sent = 0;
do {
// Fill the packet with a known value and a sequence number to check
// against, and make sure that it doesn't look like DTLS.
memset(packet.get(), sent & 0xff, size);
packet[0] = (srtp) ? 0x80 : 0x00;
rtc::SetBE32(packet.get() + kPacketNumOffset,
static_cast<uint32_t>(sent));
// Only set the bypass flag if we've activated DTLS.
int flags = (certificate_ && srtp) ? cricket::PF_SRTP_BYPASS : 0;
rtc::PacketOptions packet_options;
packet_options.packet_id = kFakePacketId;
int rv = channels_[channel]->SendPacket(
packet.get(), size, packet_options, flags);
ASSERT_GT(rv, 0);
ASSERT_EQ(size, static_cast<size_t>(rv));
++sent;
} while (sent < count);
}
int SendInvalidSrtpPacket(size_t channel, size_t size) {
ASSERT(channel < channels_.size());
std::unique_ptr<char[]> packet(new char[size]);
// Fill the packet with 0 to form an invalid SRTP packet.
memset(packet.get(), 0, size);
rtc::PacketOptions packet_options;
return channels_[channel]->SendPacket(
packet.get(), size, packet_options, cricket::PF_SRTP_BYPASS);
}
void ExpectPackets(size_t channel, size_t size) {
packet_size_ = size;
received_.clear();
}
size_t NumPacketsReceived() {
return received_.size();
}
bool VerifyPacket(const char* data, size_t size, uint32_t* out_num) {
if (size != packet_size_ ||
(data[0] != 0 && static_cast<uint8_t>(data[0]) != 0x80)) {
return false;
}
uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset);
for (size_t i = kPacketHeaderLen; i < size; ++i) {
if (static_cast<uint8_t>(data[i]) != (packet_num & 0xff)) {
return false;
}
}
if (out_num) {
*out_num = packet_num;
}
return true;
}
bool VerifyEncryptedPacket(const char* data, size_t size) {
// This is an encrypted data packet; let's make sure it's mostly random;
// less than 10% of the bytes should be equal to the cleartext packet.
if (size <= packet_size_) {
return false;
}
uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset);
int num_matches = 0;
for (size_t i = kPacketNumOffset; i < size; ++i) {
if (static_cast<uint8_t>(data[i]) == (packet_num & 0xff)) {
++num_matches;
}
}
return (num_matches < ((static_cast<int>(size) - 5) / 10));
}
// Transport channel callbacks
void OnTransportChannelWritableState(cricket::TransportChannel* channel) {
LOG(LS_INFO) << name_ << ": Channel '" << channel->component()
<< "' is writable";
}
void OnTransportChannelReadPacket(cricket::TransportChannel* channel,
const char* data, size_t size,
const rtc::PacketTime& packet_time,
int flags) {
uint32_t packet_num = 0;
ASSERT_TRUE(VerifyPacket(data, size, &packet_num));
received_.insert(packet_num);
// Only DTLS-SRTP packets should have the bypass flag set.
int expected_flags =
(certificate_ && IsRtpLeadByte(data[0])) ? cricket::PF_SRTP_BYPASS : 0;
ASSERT_EQ(expected_flags, flags);
}
void OnTransportChannelSentPacket(cricket::TransportChannel* channel,
const rtc::SentPacket& sent_packet) {
sent_packet_ = sent_packet;
}
rtc::SentPacket sent_packet() const { return sent_packet_; }
// Hook into the raw packet stream to make sure DTLS packets are encrypted.
void OnFakeTransportChannelReadPacket(cricket::TransportChannel* channel,
const char* data, size_t size,
const rtc::PacketTime& time,
int flags) {
// Flags shouldn't be set on the underlying TransportChannel packets.
ASSERT_EQ(0, flags);
// Look at the handshake packets to see what role we played.
// Check that non-handshake packets are DTLS data or SRTP bypass.
if (data[0] == 22 && size > 17) {
if (data[13] == 1) {
++received_dtls_client_hellos_;
} else if (data[13] == 2) {
++received_dtls_server_hellos_;
}
} else if (negotiated_dtls_ && !(data[0] >= 20 && data[0] <= 22)) {
ASSERT_TRUE(data[0] == 23 || IsRtpLeadByte(data[0]));
if (data[0] == 23) {
ASSERT_TRUE(VerifyEncryptedPacket(data, size));
} else if (IsRtpLeadByte(data[0])) {
ASSERT_TRUE(VerifyPacket(data, size, NULL));
}
}
}
private:
std::string name_;
rtc::scoped_refptr<rtc::RTCCertificate> certificate_;
std::unique_ptr<cricket::FakeTransport> transport_;
std::vector<cricket::DtlsTransportChannelWrapper*> channels_;
size_t packet_size_ = 0u;
std::set<int> received_;
bool use_dtls_srtp_ = false;
rtc::SSLProtocolVersion ssl_max_version_ = rtc::SSL_PROTOCOL_DTLS_12;
bool negotiated_dtls_ = false;
int received_dtls_client_hellos_ = 0;
int received_dtls_server_hellos_ = 0;
rtc::SentPacket sent_packet_;
};
// Note that this test always uses a FakeClock, due to the |fake_clock_| member
// variable.
class DtlsTransportChannelTest : public testing::Test {
public:
DtlsTransportChannelTest()
: client1_("P1"),
client2_("P2"),
channel_ct_(1),
use_dtls_(false),
use_dtls_srtp_(false),
ssl_expected_version_(rtc::SSL_PROTOCOL_DTLS_12) {}
void SetChannelCount(size_t channel_ct) {
channel_ct_ = static_cast<int>(channel_ct);
}
void SetMaxProtocolVersions(rtc::SSLProtocolVersion c1,
rtc::SSLProtocolVersion c2) {
client1_.SetupMaxProtocolVersion(c1);
client2_.SetupMaxProtocolVersion(c2);
ssl_expected_version_ = std::min(c1, c2);
}
void PrepareDtls(bool c1, bool c2, rtc::KeyType key_type) {
if (c1) {
client1_.CreateCertificate(key_type);
}
if (c2) {
client2_.CreateCertificate(key_type);
}
if (c1 && c2)
use_dtls_ = true;
}
void PrepareDtlsSrtp(bool c1, bool c2) {
if (!use_dtls_)
return;
if (c1)
client1_.SetupSrtp();
if (c2)
client2_.SetupSrtp();
if (c1 && c2)
use_dtls_srtp_ = true;
}
bool Connect(ConnectionRole client1_role, ConnectionRole client2_role) {
Negotiate(client1_role, client2_role);
bool rv = client1_.Connect(&client2_, false);
EXPECT_TRUE(rv);
if (!rv)
return false;
EXPECT_TRUE_WAIT(
client1_.all_channels_writable() && client2_.all_channels_writable(),
kTimeout);
if (!client1_.all_channels_writable() || !client2_.all_channels_writable())
return false;
// Check that we used the right roles.
if (use_dtls_) {
rtc::SSLRole client1_ssl_role =
(client1_role == cricket::CONNECTIONROLE_ACTIVE ||
(client2_role == cricket::CONNECTIONROLE_PASSIVE &&
client1_role == cricket::CONNECTIONROLE_ACTPASS)) ?
rtc::SSL_CLIENT : rtc::SSL_SERVER;
rtc::SSLRole client2_ssl_role =
(client2_role == cricket::CONNECTIONROLE_ACTIVE ||
(client1_role == cricket::CONNECTIONROLE_PASSIVE &&
client2_role == cricket::CONNECTIONROLE_ACTPASS)) ?
rtc::SSL_CLIENT : rtc::SSL_SERVER;
client1_.CheckRole(client1_ssl_role);
client2_.CheckRole(client2_ssl_role);
}
// Check that we negotiated the right ciphers.
if (use_dtls_srtp_) {
client1_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_80);
client2_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_80);
} else {
client1_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE);
client2_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE);
}
client1_.CheckSsl();
client2_.CheckSsl();
return true;
}
bool Connect() {
// By default, Client1 will be Server and Client2 will be Client.
return Connect(cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_ACTIVE);
}
void Negotiate() {
Negotiate(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE);
}
void Negotiate(ConnectionRole client1_role, ConnectionRole client2_role) {
client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING);
client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED);
// Expect success from SLTD and SRTD.
client1_.Negotiate(&client2_, cricket::CA_OFFER,
client1_role, client2_role, 0);
client2_.Negotiate(&client1_, cricket::CA_ANSWER,
client2_role, client1_role, 0);
}
// Negotiate with legacy client |client2|. Legacy client doesn't use setup
// attributes, except NONE.
void NegotiateWithLegacy() {
client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING);
client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED);
// Expect success from SLTD and SRTD.
client1_.Negotiate(&client2_, cricket::CA_OFFER,
cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_NONE, 0);
client2_.Negotiate(&client1_, cricket::CA_ANSWER,
cricket::CONNECTIONROLE_ACTIVE,
cricket::CONNECTIONROLE_NONE, 0);
}
void Renegotiate(DtlsTestClient* reoffer_initiator,
ConnectionRole client1_role, ConnectionRole client2_role,
int flags) {
if (reoffer_initiator == &client1_) {
client1_.Negotiate(&client2_, cricket::CA_OFFER,
client1_role, client2_role, flags);
client2_.Negotiate(&client1_, cricket::CA_ANSWER,
client2_role, client1_role, flags);
} else {
client2_.Negotiate(&client1_, cricket::CA_OFFER,
client2_role, client1_role, flags);
client1_.Negotiate(&client2_, cricket::CA_ANSWER,
client1_role, client2_role, flags);
}
}
void TestTransfer(size_t channel, size_t size, size_t count, bool srtp) {
LOG(LS_INFO) << "Expect packets, size=" << size;
client2_.ExpectPackets(channel, size);
client1_.SendPackets(channel, size, count, srtp);
EXPECT_EQ_WAIT(count, client2_.NumPacketsReceived(), kTimeout);
}
protected:
rtc::ScopedFakeClock fake_clock_;
DtlsTestClient client1_;
DtlsTestClient client2_;
int channel_ct_;
bool use_dtls_;
bool use_dtls_srtp_;
rtc::SSLProtocolVersion ssl_expected_version_;
};
// Test that transport negotiation of ICE, no DTLS works properly.
TEST_F(DtlsTransportChannelTest, TestChannelSetupIce) {
Negotiate();
cricket::FakeTransportChannel* channel1 = client1_.GetFakeChannel(0);
cricket::FakeTransportChannel* channel2 = client2_.GetFakeChannel(0);
ASSERT_TRUE(channel1 != NULL);
ASSERT_TRUE(channel2 != NULL);
EXPECT_EQ(cricket::ICEROLE_CONTROLLING, channel1->GetIceRole());
EXPECT_EQ(1U, channel1->IceTiebreaker());
EXPECT_EQ(kIceUfrag1, channel1->ice_ufrag());
EXPECT_EQ(kIcePwd1, channel1->ice_pwd());
EXPECT_EQ(cricket::ICEROLE_CONTROLLED, channel2->GetIceRole());
EXPECT_EQ(2U, channel2->IceTiebreaker());
}
// Connect without DTLS, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestTransfer) {
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
}
// Connect without DTLS, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestOnSentPacket) {
ASSERT_TRUE(Connect());
EXPECT_EQ(client1_.sent_packet().send_time_ms, -1);
TestTransfer(0, 1000, 100, false);
EXPECT_EQ(kFakePacketId, client1_.sent_packet().packet_id);
EXPECT_GE(client1_.sent_packet().send_time_ms, 0);
}
// Create two channels without DTLS, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestTransferTwoChannels) {
SetChannelCount(2);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
TestTransfer(1, 1000, 100, false);
}
// Connect without DTLS, and transfer SRTP data.
TEST_F(DtlsTransportChannelTest, TestTransferSrtp) {
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, true);
}
// Create two channels without DTLS, and transfer SRTP data.
TEST_F(DtlsTransportChannelTest, TestTransferSrtpTwoChannels) {
SetChannelCount(2);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
// Connect with DTLS, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestTransferDtls) {
MAYBE_SKIP_TEST(HaveDtls);
PrepareDtls(true, true, rtc::KT_DEFAULT);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
}
// Create two channels with DTLS, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsTwoChannels) {
MAYBE_SKIP_TEST(HaveDtls);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
TestTransfer(1, 1000, 100, false);
}
// Connect with A doing DTLS and B not, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsRejected) {
PrepareDtls(true, false, rtc::KT_DEFAULT);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
}
// Connect with B doing DTLS and A not, and transfer some data.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsNotOffered) {
PrepareDtls(false, true, rtc::KT_DEFAULT);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
}
// Create two channels with DTLS 1.0 and check ciphers.
TEST_F(DtlsTransportChannelTest, TestDtls12None) {
MAYBE_SKIP_TEST(HaveDtls);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10);
ASSERT_TRUE(Connect());
}
// Create two channels with DTLS 1.2 and check ciphers.
TEST_F(DtlsTransportChannelTest, TestDtls12Both) {
MAYBE_SKIP_TEST(HaveDtls);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_12);
ASSERT_TRUE(Connect());
}
// Create two channels with DTLS 1.0 / DTLS 1.2 and check ciphers.
TEST_F(DtlsTransportChannelTest, TestDtls12Client1) {
MAYBE_SKIP_TEST(HaveDtls);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_10);
ASSERT_TRUE(Connect());
}
// Create two channels with DTLS 1.2 / DTLS 1.0 and check ciphers.
TEST_F(DtlsTransportChannelTest, TestDtls12Client2) {
MAYBE_SKIP_TEST(HaveDtls);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_12);
ASSERT_TRUE(Connect());
}
// Connect with DTLS, negotiate DTLS-SRTP, and transfer SRTP using bypass.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtp) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, true);
}
// Connect with DTLS-SRTP, transfer an invalid SRTP packet, and expects -1
// returned.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsInvalidSrtpPacket) {
MAYBE_SKIP_TEST(HaveDtls);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect());
int result = client1_.SendInvalidSrtpPacket(0, 100);
ASSERT_EQ(-1, result);
}
// Connect with DTLS. A does DTLS-SRTP but B does not.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpRejected) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, false);
ASSERT_TRUE(Connect());
}
// Connect with DTLS. B does DTLS-SRTP but A does not.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpNotOffered) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(false, true);
ASSERT_TRUE(Connect());
}
// Create two channels with DTLS, negotiate DTLS-SRTP, and transfer bypass SRTP.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpTwoChannels) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
// Create a single channel with DTLS, and send normal data and SRTP data on it.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpDemux) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect());
TestTransfer(0, 1000, 100, false);
TestTransfer(0, 1000, 100, true);
}
// Testing when the remote is passive.
TEST_F(DtlsTransportChannelTest, TestTransferDtlsAnswererIsPassive) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_PASSIVE));
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
// Testing with the legacy DTLS client which doesn't use setup attribute.
// In this case legacy is the answerer.
TEST_F(DtlsTransportChannelTest, TestDtlsSetupWithLegacyAsAnswerer) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
PrepareDtls(true, true, rtc::KT_DEFAULT);
NegotiateWithLegacy();
rtc::SSLRole channel1_role;
rtc::SSLRole channel2_role;
EXPECT_TRUE(client1_.transport()->GetSslRole(&channel1_role));
EXPECT_TRUE(client2_.transport()->GetSslRole(&channel2_role));
EXPECT_EQ(rtc::SSL_SERVER, channel1_role);
EXPECT_EQ(rtc::SSL_CLIENT, channel2_role);
}
// Testing re offer/answer after the session is estbalished. Roles will be
// kept same as of the previous negotiation.
TEST_F(DtlsTransportChannelTest, TestDtlsReOfferFromOfferer) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
// Initial role for client1 is ACTPASS and client2 is ACTIVE.
ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_ACTIVE));
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
// Using input roles for the re-offer.
Renegotiate(&client1_, cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_ACTIVE, NF_REOFFER);
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
TEST_F(DtlsTransportChannelTest, TestDtlsReOfferFromAnswerer) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
// Initial role for client1 is ACTPASS and client2 is ACTIVE.
ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_ACTIVE));
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
// Using input roles for the re-offer.
Renegotiate(&client2_, cricket::CONNECTIONROLE_PASSIVE,
cricket::CONNECTIONROLE_ACTPASS, NF_REOFFER);
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
// Test that any change in role after the intial setup will result in failure.
TEST_F(DtlsTransportChannelTest, TestDtlsRoleReversal) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_PASSIVE));
// Renegotiate from client2 with actpass and client1 as active.
Renegotiate(&client2_, cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_ACTIVE,
NF_REOFFER | NF_EXPECT_FAILURE);
}
// Test that using different setup attributes which results in similar ssl
// role as the initial negotiation will result in success.
TEST_F(DtlsTransportChannelTest, TestDtlsReOfferWithDifferentSetupAttr) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_PASSIVE));
// Renegotiate from client2 with actpass and client1 as active.
Renegotiate(&client2_, cricket::CONNECTIONROLE_ACTIVE,
cricket::CONNECTIONROLE_ACTPASS, NF_REOFFER);
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
// Test that re-negotiation can be started before the clients become connected
// in the first negotiation.
TEST_F(DtlsTransportChannelTest, TestRenegotiateBeforeConnect) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
SetChannelCount(2);
PrepareDtls(true, true, rtc::KT_DEFAULT);
PrepareDtlsSrtp(true, true);
Negotiate();
Renegotiate(&client1_, cricket::CONNECTIONROLE_ACTPASS,
cricket::CONNECTIONROLE_ACTIVE, NF_REOFFER);
bool rv = client1_.Connect(&client2_, false);
EXPECT_TRUE(rv);
EXPECT_TRUE_WAIT(
client1_.all_channels_writable() && client2_.all_channels_writable(),
kTimeout);
TestTransfer(0, 1000, 100, true);
TestTransfer(1, 1000, 100, true);
}
// Test Certificates state after negotiation but before connection.
TEST_F(DtlsTransportChannelTest, TestCertificatesBeforeConnect) {
MAYBE_SKIP_TEST(HaveDtls);
PrepareDtls(true, true, rtc::KT_DEFAULT);
Negotiate();
rtc::scoped_refptr<rtc::RTCCertificate> certificate1;
rtc::scoped_refptr<rtc::RTCCertificate> certificate2;
std::unique_ptr<rtc::SSLCertificate> remote_cert1;
std::unique_ptr<rtc::SSLCertificate> remote_cert2;
// After negotiation, each side has a distinct local certificate, but still no
// remote certificate, because connection has not yet occurred.
ASSERT_TRUE(client1_.transport()->GetLocalCertificate(&certificate1));
ASSERT_TRUE(client2_.transport()->GetLocalCertificate(&certificate2));
ASSERT_NE(certificate1->ssl_certificate().ToPEMString(),
certificate2->ssl_certificate().ToPEMString());
ASSERT_FALSE(client1_.transport()->GetRemoteSSLCertificate());
ASSERT_FALSE(client2_.transport()->GetRemoteSSLCertificate());
}
// Test Certificates state after connection.
TEST_F(DtlsTransportChannelTest, TestCertificatesAfterConnect) {
MAYBE_SKIP_TEST(HaveDtls);
PrepareDtls(true, true, rtc::KT_DEFAULT);
ASSERT_TRUE(Connect());
rtc::scoped_refptr<rtc::RTCCertificate> certificate1;
rtc::scoped_refptr<rtc::RTCCertificate> certificate2;
// After connection, each side has a distinct local certificate.
ASSERT_TRUE(client1_.transport()->GetLocalCertificate(&certificate1));
ASSERT_TRUE(client2_.transport()->GetLocalCertificate(&certificate2));
ASSERT_NE(certificate1->ssl_certificate().ToPEMString(),
certificate2->ssl_certificate().ToPEMString());
// Each side's remote certificate is the other side's local certificate.
std::unique_ptr<rtc::SSLCertificate> remote_cert1 =
client1_.transport()->GetRemoteSSLCertificate();
ASSERT_TRUE(remote_cert1);
ASSERT_EQ(remote_cert1->ToPEMString(),
certificate2->ssl_certificate().ToPEMString());
std::unique_ptr<rtc::SSLCertificate> remote_cert2 =
client2_.transport()->GetRemoteSSLCertificate();
ASSERT_TRUE(remote_cert2);
ASSERT_EQ(remote_cert2->ToPEMString(),
certificate1->ssl_certificate().ToPEMString());
}
// Test that DTLS completes promptly if a ClientHello is received before the
// transport channel is writable (allowing a ServerHello to be sent).
TEST_F(DtlsTransportChannelTest, TestReceiveClientHelloBeforeWritable) {
MAYBE_SKIP_TEST(HaveDtls);
PrepareDtls(true, true, rtc::KT_DEFAULT);
// Exchange transport descriptions.
Negotiate(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE);
// Make client2_ writable, but not client1_.
EXPECT_TRUE(client2_.Connect(&client1_, true));
EXPECT_TRUE_WAIT(client2_.all_raw_channels_writable(), kTimeout);
// Expect a DTLS ClientHello to be sent even while client1_ isn't writable.
EXPECT_EQ_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout);
EXPECT_FALSE(client1_.all_raw_channels_writable());
// Now make client1_ writable and expect the handshake to complete
// without client2_ needing to retransmit the ClientHello.
EXPECT_TRUE(client1_.Connect(&client2_, true));
EXPECT_TRUE_WAIT(
client1_.all_channels_writable() && client2_.all_channels_writable(),
kTimeout);
EXPECT_EQ(1, client1_.received_dtls_client_hellos());
}
// Test that DTLS completes promptly if a ClientHello is received before the
// transport channel has a remote fingerprint (allowing a ServerHello to be
// sent).
TEST_F(DtlsTransportChannelTest,
TestReceiveClientHelloBeforeRemoteFingerprint) {
MAYBE_SKIP_TEST(HaveDtls);
PrepareDtls(true, true, rtc::KT_DEFAULT);
client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING);
client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED);
// Make client2_ writable and give it local/remote certs, but don't yet give
// client1_ a remote fingerprint.
client1_.transport()->SetLocalTransportDescription(
MakeTransportDescription(client1_.certificate(),
cricket::CONNECTIONROLE_ACTPASS),
cricket::CA_OFFER, nullptr);
client2_.Negotiate(&client1_, cricket::CA_ANSWER,
cricket::CONNECTIONROLE_ACTIVE,
cricket::CONNECTIONROLE_ACTPASS, 0);
EXPECT_TRUE(client2_.Connect(&client1_, true));
EXPECT_TRUE_WAIT(client2_.all_raw_channels_writable(), kTimeout);
// Expect a DTLS ClientHello to be sent even while client1_ doesn't have a
// remote fingerprint.
EXPECT_EQ_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout);
EXPECT_FALSE(client1_.all_raw_channels_writable());
// Now make give client1_ its remote fingerprint and make it writable, and
// expect the handshake to complete without client2_ needing to retransmit
// the ClientHello.
client1_.transport()->SetRemoteTransportDescription(
MakeTransportDescription(client2_.certificate(),
cricket::CONNECTIONROLE_ACTIVE),
cricket::CA_ANSWER, nullptr);
EXPECT_TRUE(client1_.Connect(&client2_, true));
EXPECT_TRUE_WAIT(
client1_.all_channels_writable() && client2_.all_channels_writable(),
kTimeout);
EXPECT_EQ(1, client1_.received_dtls_client_hellos());
}
// Test that packets are retransmitted according to the expected schedule.
// Each time a timeout occurs, the retransmission timer should be doubled up to
// 60 seconds. The timer defaults to 1 second, but for WebRTC we should be
// initializing it to 50ms.
TEST_F(DtlsTransportChannelTest, TestRetransmissionSchedule) {
MAYBE_SKIP_TEST(HaveDtls);
// We can only change the retransmission schedule with a recently-added
// BoringSSL API. Skip the test if not built with BoringSSL.
MAYBE_SKIP_TEST(IsBoringSsl);
PrepareDtls(true, true, rtc::KT_DEFAULT);
// Exchange transport descriptions.
Negotiate(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE);
// Make client2_ writable, but not client1_.
// This means client1_ will send DTLS client hellos but get no response.
EXPECT_TRUE(client2_.Connect(&client1_, true));
EXPECT_TRUE_WAIT(client2_.all_raw_channels_writable(), kTimeout);
// Wait for the first client hello to be sent.
EXPECT_EQ_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout);
EXPECT_FALSE(client1_.all_raw_channels_writable());
static int timeout_schedule_ms[] = {50, 100, 200, 400, 800, 1600,
3200, 6400, 12800, 25600, 51200, 60000};
int expected_hellos = 1;
for (size_t i = 0;
i < (sizeof(timeout_schedule_ms) / sizeof(timeout_schedule_ms[0]));
++i) {
// For each expected retransmission time, advance the fake clock a
// millisecond before the expected time and verify that no unexpected
// retransmissions were sent. Then advance it the final millisecond and
// verify that the expected retransmission was sent.
fake_clock_.AdvanceTime(
rtc::TimeDelta::FromMilliseconds(timeout_schedule_ms[i] - 1));
EXPECT_EQ(expected_hellos, client1_.received_dtls_client_hellos());
fake_clock_.AdvanceTime(rtc::TimeDelta::FromMilliseconds(1));
EXPECT_EQ(++expected_hellos, client1_.received_dtls_client_hellos());
}
}