53 lines
1.6 KiB
Python
53 lines
1.6 KiB
Python
#!/usr/bin/python
|
|
|
|
from os import environ, path
|
|
|
|
|
|
from pocketsphinx.pocketsphinx import *
|
|
from sphinxbase.sphinxbase import *
|
|
|
|
MODELDIR = "../../../model"
|
|
DATADIR = "../../../test/data"
|
|
|
|
# Create a decoder with certain model
|
|
config = Decoder.default_config()
|
|
config.set_string('-hmm', path.join(MODELDIR, 'en-us/en-us'))
|
|
config.set_string('-lm', path.join(MODELDIR, 'en-us/en-us.lm.bin'))
|
|
config.set_string('-dict', path.join(MODELDIR, 'en-us/cmudict-en-us.dict'))
|
|
|
|
# Decode streaming data.
|
|
decoder = Decoder(config)
|
|
|
|
print ("Pronunciation for word 'hello' is ", decoder.lookup_word("hello"))
|
|
print ("Pronunciation for word 'abcdf' is ", decoder.lookup_word("abcdf"))
|
|
|
|
decoder.start_utt()
|
|
stream = open(path.join(DATADIR, 'goforward.raw'), 'rb')
|
|
while True:
|
|
buf = stream.read(1024)
|
|
if buf:
|
|
decoder.process_raw(buf, False, False)
|
|
else:
|
|
break
|
|
decoder.end_utt()
|
|
|
|
hypothesis = decoder.hyp()
|
|
logmath = decoder.get_logmath()
|
|
print ('Best hypothesis: ', hypothesis.hypstr, " model score: ", hypothesis.best_score, " confidence: ", logmath.exp(hypothesis.prob))
|
|
|
|
print ('Best hypothesis segments: ', [seg.word for seg in decoder.seg()])
|
|
|
|
# Access N best decodings.
|
|
print ('Best 10 hypothesis: ')
|
|
for best, i in zip(decoder.nbest(), range(10)):
|
|
print (best.hypstr, best.score)
|
|
|
|
stream = open(path.join(DATADIR, 'goforward.mfc'), 'rb')
|
|
stream.read(4)
|
|
buf = stream.read(13780)
|
|
decoder.start_utt()
|
|
decoder.process_cep(buf, False, True)
|
|
decoder.end_utt()
|
|
hypothesis = decoder.hyp()
|
|
print ('Best hypothesis: ', hypothesis.hypstr, " model score: ", hypothesis.best_score, " confidence: ", hypothesis.prob)
|