1518 lines
54 KiB
C++
1518 lines
54 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/p2p/base/port.h"
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "webrtc/p2p/base/common.h"
|
|
#include "webrtc/p2p/base/portallocator.h"
|
|
#include "webrtc/base/base64.h"
|
|
#include "webrtc/base/crc32.h"
|
|
#include "webrtc/base/helpers.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/messagedigest.h"
|
|
#include "webrtc/base/network.h"
|
|
#include "webrtc/base/stringencode.h"
|
|
#include "webrtc/base/stringutils.h"
|
|
|
|
namespace {
|
|
|
|
// Determines whether we have seen at least the given maximum number of
|
|
// pings fail to have a response.
|
|
inline bool TooManyFailures(
|
|
const std::vector<cricket::Connection::SentPing>& pings_since_last_response,
|
|
uint32_t maximum_failures,
|
|
int rtt_estimate,
|
|
int64_t now) {
|
|
// If we haven't sent that many pings, then we can't have failed that many.
|
|
if (pings_since_last_response.size() < maximum_failures)
|
|
return false;
|
|
|
|
// Check if the window in which we would expect a response to the ping has
|
|
// already elapsed.
|
|
int64_t expected_response_time =
|
|
pings_since_last_response[maximum_failures - 1].sent_time + rtt_estimate;
|
|
return now > expected_response_time;
|
|
}
|
|
|
|
// Determines whether we have gone too long without seeing any response.
|
|
inline bool TooLongWithoutResponse(
|
|
const std::vector<cricket::Connection::SentPing>& pings_since_last_response,
|
|
int64_t maximum_time,
|
|
int64_t now) {
|
|
if (pings_since_last_response.size() == 0)
|
|
return false;
|
|
|
|
auto first = pings_since_last_response[0];
|
|
return now > (first.sent_time + maximum_time);
|
|
}
|
|
|
|
// We will restrict RTT estimates (when used for determining state) to be
|
|
// within a reasonable range.
|
|
const int MINIMUM_RTT = 100; // 0.1 seconds
|
|
const int MAXIMUM_RTT = 3000; // 3 seconds
|
|
|
|
// When we don't have any RTT data, we have to pick something reasonable. We
|
|
// use a large value just in case the connection is really slow.
|
|
const int DEFAULT_RTT = MAXIMUM_RTT;
|
|
|
|
// Computes our estimate of the RTT given the current estimate.
|
|
inline int ConservativeRTTEstimate(int rtt) {
|
|
return std::max(MINIMUM_RTT, std::min(MAXIMUM_RTT, 2 * rtt));
|
|
}
|
|
|
|
// Weighting of the old rtt value to new data.
|
|
const int RTT_RATIO = 3; // 3 : 1
|
|
|
|
// The delay before we begin checking if this port is useless.
|
|
const int kPortTimeoutDelay = 30 * 1000; // 30 seconds
|
|
} // namespace
|
|
|
|
namespace cricket {
|
|
|
|
// TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires
|
|
// the signaling part be updated correspondingly as well.
|
|
const char LOCAL_PORT_TYPE[] = "local";
|
|
const char STUN_PORT_TYPE[] = "stun";
|
|
const char PRFLX_PORT_TYPE[] = "prflx";
|
|
const char RELAY_PORT_TYPE[] = "relay";
|
|
|
|
const char UDP_PROTOCOL_NAME[] = "udp";
|
|
const char TCP_PROTOCOL_NAME[] = "tcp";
|
|
const char SSLTCP_PROTOCOL_NAME[] = "ssltcp";
|
|
|
|
static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME,
|
|
TCP_PROTOCOL_NAME,
|
|
SSLTCP_PROTOCOL_NAME };
|
|
|
|
const char* ProtoToString(ProtocolType proto) {
|
|
return PROTO_NAMES[proto];
|
|
}
|
|
|
|
bool StringToProto(const char* value, ProtocolType* proto) {
|
|
for (size_t i = 0; i <= PROTO_LAST; ++i) {
|
|
if (_stricmp(PROTO_NAMES[i], value) == 0) {
|
|
*proto = static_cast<ProtocolType>(i);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// RFC 6544, TCP candidate encoding rules.
|
|
const int DISCARD_PORT = 9;
|
|
const char TCPTYPE_ACTIVE_STR[] = "active";
|
|
const char TCPTYPE_PASSIVE_STR[] = "passive";
|
|
const char TCPTYPE_SIMOPEN_STR[] = "so";
|
|
|
|
// Foundation: An arbitrary string that is the same for two candidates
|
|
// that have the same type, base IP address, protocol (UDP, TCP,
|
|
// etc.), and STUN or TURN server. If any of these are different,
|
|
// then the foundation will be different. Two candidate pairs with
|
|
// the same foundation pairs are likely to have similar network
|
|
// characteristics. Foundations are used in the frozen algorithm.
|
|
static std::string ComputeFoundation(const std::string& type,
|
|
const std::string& protocol,
|
|
const std::string& relay_protocol,
|
|
const rtc::SocketAddress& base_address) {
|
|
std::ostringstream ost;
|
|
ost << type << base_address.ipaddr().ToString() << protocol << relay_protocol;
|
|
return rtc::ToString<uint32_t>(rtc::ComputeCrc32(ost.str()));
|
|
}
|
|
|
|
Port::Port(rtc::Thread* thread,
|
|
rtc::PacketSocketFactory* factory,
|
|
rtc::Network* network,
|
|
const rtc::IPAddress& ip,
|
|
const std::string& username_fragment,
|
|
const std::string& password)
|
|
: thread_(thread),
|
|
factory_(factory),
|
|
send_retransmit_count_attribute_(false),
|
|
network_(network),
|
|
ip_(ip),
|
|
min_port_(0),
|
|
max_port_(0),
|
|
component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
|
|
generation_(0),
|
|
ice_username_fragment_(username_fragment),
|
|
password_(password),
|
|
timeout_delay_(kPortTimeoutDelay),
|
|
enable_port_packets_(false),
|
|
ice_role_(ICEROLE_UNKNOWN),
|
|
tiebreaker_(0),
|
|
shared_socket_(true) {
|
|
Construct();
|
|
}
|
|
|
|
Port::Port(rtc::Thread* thread,
|
|
const std::string& type,
|
|
rtc::PacketSocketFactory* factory,
|
|
rtc::Network* network,
|
|
const rtc::IPAddress& ip,
|
|
uint16_t min_port,
|
|
uint16_t max_port,
|
|
const std::string& username_fragment,
|
|
const std::string& password)
|
|
: thread_(thread),
|
|
factory_(factory),
|
|
type_(type),
|
|
send_retransmit_count_attribute_(false),
|
|
network_(network),
|
|
ip_(ip),
|
|
min_port_(min_port),
|
|
max_port_(max_port),
|
|
component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
|
|
generation_(0),
|
|
ice_username_fragment_(username_fragment),
|
|
password_(password),
|
|
timeout_delay_(kPortTimeoutDelay),
|
|
enable_port_packets_(false),
|
|
ice_role_(ICEROLE_UNKNOWN),
|
|
tiebreaker_(0),
|
|
shared_socket_(false) {
|
|
ASSERT(factory_ != NULL);
|
|
Construct();
|
|
}
|
|
|
|
void Port::Construct() {
|
|
// TODO(pthatcher): Remove this old behavior once we're sure no one
|
|
// relies on it. If the username_fragment and password are empty,
|
|
// we should just create one.
|
|
if (ice_username_fragment_.empty()) {
|
|
ASSERT(password_.empty());
|
|
ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH);
|
|
password_ = rtc::CreateRandomString(ICE_PWD_LENGTH);
|
|
}
|
|
network_->SignalInactive.connect(this, &Port::OnNetworkInactive);
|
|
network_->SignalTypeChanged.connect(this, &Port::OnNetworkTypeChanged);
|
|
network_cost_ = network_->GetCost();
|
|
|
|
LOG_J(LS_INFO, this) << "Port created with network cost " << network_cost_;
|
|
}
|
|
|
|
Port::~Port() {
|
|
// Delete all of the remaining connections. We copy the list up front
|
|
// because each deletion will cause it to be modified.
|
|
|
|
std::vector<Connection*> list;
|
|
|
|
AddressMap::iterator iter = connections_.begin();
|
|
while (iter != connections_.end()) {
|
|
list.push_back(iter->second);
|
|
++iter;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < list.size(); i++)
|
|
delete list[i];
|
|
}
|
|
|
|
void Port::SetIceParameters(int component,
|
|
const std::string& username_fragment,
|
|
const std::string& password) {
|
|
component_ = component;
|
|
ice_username_fragment_ = username_fragment;
|
|
password_ = password;
|
|
for (Candidate& c : candidates_) {
|
|
c.set_component(component);
|
|
c.set_username(username_fragment);
|
|
c.set_password(password);
|
|
}
|
|
}
|
|
|
|
Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) {
|
|
AddressMap::const_iterator iter = connections_.find(remote_addr);
|
|
if (iter != connections_.end())
|
|
return iter->second;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
void Port::AddAddress(const rtc::SocketAddress& address,
|
|
const rtc::SocketAddress& base_address,
|
|
const rtc::SocketAddress& related_address,
|
|
const std::string& protocol,
|
|
const std::string& relay_protocol,
|
|
const std::string& tcptype,
|
|
const std::string& type,
|
|
uint32_t type_preference,
|
|
uint32_t relay_preference,
|
|
bool final) {
|
|
if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) {
|
|
ASSERT(!tcptype.empty());
|
|
}
|
|
|
|
std::string foundation =
|
|
ComputeFoundation(type, protocol, relay_protocol, base_address);
|
|
Candidate c(component_, protocol, address, 0U, username_fragment(), password_,
|
|
type, generation_, foundation, network_->id(), network_cost_);
|
|
c.set_priority(
|
|
c.GetPriority(type_preference, network_->preference(), relay_preference));
|
|
c.set_relay_protocol(relay_protocol);
|
|
c.set_tcptype(tcptype);
|
|
c.set_network_name(network_->name());
|
|
c.set_network_type(network_->type());
|
|
c.set_related_address(related_address);
|
|
candidates_.push_back(c);
|
|
SignalCandidateReady(this, c);
|
|
|
|
if (final) {
|
|
SignalPortComplete(this);
|
|
}
|
|
}
|
|
|
|
void Port::AddOrReplaceConnection(Connection* conn) {
|
|
auto ret = connections_.insert(
|
|
std::make_pair(conn->remote_candidate().address(), conn));
|
|
// If there is a different connection on the same remote address, replace
|
|
// it with the new one and destroy the old one.
|
|
if (ret.second == false && ret.first->second != conn) {
|
|
LOG_J(LS_WARNING, this)
|
|
<< "A new connection was created on an existing remote address. "
|
|
<< "New remote candidate: " << conn->remote_candidate().ToString();
|
|
ret.first->second->SignalDestroyed.disconnect(this);
|
|
ret.first->second->Destroy();
|
|
ret.first->second = conn;
|
|
}
|
|
conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed);
|
|
SignalConnectionCreated(this, conn);
|
|
}
|
|
|
|
void Port::OnReadPacket(
|
|
const char* data, size_t size, const rtc::SocketAddress& addr,
|
|
ProtocolType proto) {
|
|
// If the user has enabled port packets, just hand this over.
|
|
if (enable_port_packets_) {
|
|
SignalReadPacket(this, data, size, addr);
|
|
return;
|
|
}
|
|
|
|
// If this is an authenticated STUN request, then signal unknown address and
|
|
// send back a proper binding response.
|
|
std::unique_ptr<IceMessage> msg;
|
|
std::string remote_username;
|
|
if (!GetStunMessage(data, size, addr, &msg, &remote_username)) {
|
|
LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address ("
|
|
<< addr.ToSensitiveString() << ")";
|
|
} else if (!msg) {
|
|
// STUN message handled already
|
|
} else if (msg->type() == STUN_BINDING_REQUEST) {
|
|
LOG(LS_INFO) << "Received STUN ping "
|
|
<< " id=" << rtc::hex_encode(msg->transaction_id())
|
|
<< " from unknown address " << addr.ToSensitiveString();
|
|
|
|
// Check for role conflicts.
|
|
if (!MaybeIceRoleConflict(addr, msg.get(), remote_username)) {
|
|
LOG(LS_INFO) << "Received conflicting role from the peer.";
|
|
return;
|
|
}
|
|
|
|
SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false);
|
|
} else {
|
|
// NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we
|
|
// pruned a connection for this port while it had STUN requests in flight,
|
|
// because we then get back responses for them, which this code correctly
|
|
// does not handle.
|
|
if (msg->type() != STUN_BINDING_RESPONSE) {
|
|
LOG_J(LS_ERROR, this) << "Received unexpected STUN message type ("
|
|
<< msg->type() << ") from unknown address ("
|
|
<< addr.ToSensitiveString() << ")";
|
|
}
|
|
}
|
|
}
|
|
|
|
void Port::OnReadyToSend() {
|
|
AddressMap::iterator iter = connections_.begin();
|
|
for (; iter != connections_.end(); ++iter) {
|
|
iter->second->OnReadyToSend();
|
|
}
|
|
}
|
|
|
|
size_t Port::AddPrflxCandidate(const Candidate& local) {
|
|
candidates_.push_back(local);
|
|
return (candidates_.size() - 1);
|
|
}
|
|
|
|
bool Port::GetStunMessage(const char* data,
|
|
size_t size,
|
|
const rtc::SocketAddress& addr,
|
|
std::unique_ptr<IceMessage>* out_msg,
|
|
std::string* out_username) {
|
|
// NOTE: This could clearly be optimized to avoid allocating any memory.
|
|
// However, at the data rates we'll be looking at on the client side,
|
|
// this probably isn't worth worrying about.
|
|
ASSERT(out_msg != NULL);
|
|
ASSERT(out_username != NULL);
|
|
out_username->clear();
|
|
|
|
// Don't bother parsing the packet if we can tell it's not STUN.
|
|
// In ICE mode, all STUN packets will have a valid fingerprint.
|
|
if (!StunMessage::ValidateFingerprint(data, size)) {
|
|
return false;
|
|
}
|
|
|
|
// Parse the request message. If the packet is not a complete and correct
|
|
// STUN message, then ignore it.
|
|
std::unique_ptr<IceMessage> stun_msg(new IceMessage());
|
|
rtc::ByteBufferReader buf(data, size);
|
|
if (!stun_msg->Read(&buf) || (buf.Length() > 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (stun_msg->type() == STUN_BINDING_REQUEST) {
|
|
// Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first.
|
|
// If not present, fail with a 400 Bad Request.
|
|
if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) ||
|
|
!stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY)) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I "
|
|
<< "from " << addr.ToSensitiveString();
|
|
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST,
|
|
STUN_ERROR_REASON_BAD_REQUEST);
|
|
return true;
|
|
}
|
|
|
|
// If the username is bad or unknown, fail with a 401 Unauthorized.
|
|
std::string local_ufrag;
|
|
std::string remote_ufrag;
|
|
if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag) ||
|
|
local_ufrag != username_fragment()) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN request with bad local username "
|
|
<< local_ufrag << " from "
|
|
<< addr.ToSensitiveString();
|
|
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
|
|
STUN_ERROR_REASON_UNAUTHORIZED);
|
|
return true;
|
|
}
|
|
|
|
// If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized
|
|
if (!stun_msg->ValidateMessageIntegrity(data, size, password_)) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I "
|
|
<< "from " << addr.ToSensitiveString()
|
|
<< ", password_=" << password_;
|
|
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
|
|
STUN_ERROR_REASON_UNAUTHORIZED);
|
|
return true;
|
|
}
|
|
out_username->assign(remote_ufrag);
|
|
} else if ((stun_msg->type() == STUN_BINDING_RESPONSE) ||
|
|
(stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) {
|
|
if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) {
|
|
if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN binding error:"
|
|
<< " class=" << error_code->eclass()
|
|
<< " number=" << error_code->number()
|
|
<< " reason='" << error_code->reason() << "'"
|
|
<< " from " << addr.ToSensitiveString();
|
|
// Return message to allow error-specific processing
|
|
} else {
|
|
LOG_J(LS_ERROR, this) << "Received STUN binding error without a error "
|
|
<< "code from " << addr.ToSensitiveString();
|
|
return true;
|
|
}
|
|
}
|
|
// NOTE: Username should not be used in verifying response messages.
|
|
out_username->clear();
|
|
} else if (stun_msg->type() == STUN_BINDING_INDICATION) {
|
|
LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:"
|
|
<< " from " << addr.ToSensitiveString();
|
|
out_username->clear();
|
|
// No stun attributes will be verified, if it's stun indication message.
|
|
// Returning from end of the this method.
|
|
} else {
|
|
LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type ("
|
|
<< stun_msg->type() << ") from "
|
|
<< addr.ToSensitiveString();
|
|
return true;
|
|
}
|
|
|
|
// Return the STUN message found.
|
|
*out_msg = std::move(stun_msg);
|
|
return true;
|
|
}
|
|
|
|
bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) {
|
|
int family = ip().family();
|
|
// We use single-stack sockets, so families must match.
|
|
if (addr.family() != family) {
|
|
return false;
|
|
}
|
|
// Link-local IPv6 ports can only connect to other link-local IPv6 ports.
|
|
if (family == AF_INET6 &&
|
|
(IPIsLinkLocal(ip()) != IPIsLinkLocal(addr.ipaddr()))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Port::ParseStunUsername(const StunMessage* stun_msg,
|
|
std::string* local_ufrag,
|
|
std::string* remote_ufrag) const {
|
|
// The packet must include a username that either begins or ends with our
|
|
// fragment. It should begin with our fragment if it is a request and it
|
|
// should end with our fragment if it is a response.
|
|
local_ufrag->clear();
|
|
remote_ufrag->clear();
|
|
const StunByteStringAttribute* username_attr =
|
|
stun_msg->GetByteString(STUN_ATTR_USERNAME);
|
|
if (username_attr == NULL)
|
|
return false;
|
|
|
|
// RFRAG:LFRAG
|
|
const std::string username = username_attr->GetString();
|
|
size_t colon_pos = username.find(":");
|
|
if (colon_pos == std::string::npos) {
|
|
return false;
|
|
}
|
|
|
|
*local_ufrag = username.substr(0, colon_pos);
|
|
*remote_ufrag = username.substr(colon_pos + 1, username.size());
|
|
return true;
|
|
}
|
|
|
|
bool Port::MaybeIceRoleConflict(
|
|
const rtc::SocketAddress& addr, IceMessage* stun_msg,
|
|
const std::string& remote_ufrag) {
|
|
// Validate ICE_CONTROLLING or ICE_CONTROLLED attributes.
|
|
bool ret = true;
|
|
IceRole remote_ice_role = ICEROLE_UNKNOWN;
|
|
uint64_t remote_tiebreaker = 0;
|
|
const StunUInt64Attribute* stun_attr =
|
|
stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
|
|
if (stun_attr) {
|
|
remote_ice_role = ICEROLE_CONTROLLING;
|
|
remote_tiebreaker = stun_attr->value();
|
|
}
|
|
|
|
// If |remote_ufrag| is same as port local username fragment and
|
|
// tie breaker value received in the ping message matches port
|
|
// tiebreaker value this must be a loopback call.
|
|
// We will treat this as valid scenario.
|
|
if (remote_ice_role == ICEROLE_CONTROLLING &&
|
|
username_fragment() == remote_ufrag &&
|
|
remote_tiebreaker == IceTiebreaker()) {
|
|
return true;
|
|
}
|
|
|
|
stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
|
|
if (stun_attr) {
|
|
remote_ice_role = ICEROLE_CONTROLLED;
|
|
remote_tiebreaker = stun_attr->value();
|
|
}
|
|
|
|
switch (ice_role_) {
|
|
case ICEROLE_CONTROLLING:
|
|
if (ICEROLE_CONTROLLING == remote_ice_role) {
|
|
if (remote_tiebreaker >= tiebreaker_) {
|
|
SignalRoleConflict(this);
|
|
} else {
|
|
// Send Role Conflict (487) error response.
|
|
SendBindingErrorResponse(stun_msg, addr,
|
|
STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
|
|
ret = false;
|
|
}
|
|
}
|
|
break;
|
|
case ICEROLE_CONTROLLED:
|
|
if (ICEROLE_CONTROLLED == remote_ice_role) {
|
|
if (remote_tiebreaker < tiebreaker_) {
|
|
SignalRoleConflict(this);
|
|
} else {
|
|
// Send Role Conflict (487) error response.
|
|
SendBindingErrorResponse(stun_msg, addr,
|
|
STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
|
|
ret = false;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(false);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void Port::CreateStunUsername(const std::string& remote_username,
|
|
std::string* stun_username_attr_str) const {
|
|
stun_username_attr_str->clear();
|
|
*stun_username_attr_str = remote_username;
|
|
stun_username_attr_str->append(":");
|
|
stun_username_attr_str->append(username_fragment());
|
|
}
|
|
|
|
void Port::SendBindingResponse(StunMessage* request,
|
|
const rtc::SocketAddress& addr) {
|
|
ASSERT(request->type() == STUN_BINDING_REQUEST);
|
|
|
|
// Retrieve the username from the request.
|
|
const StunByteStringAttribute* username_attr =
|
|
request->GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT(username_attr != NULL);
|
|
if (username_attr == NULL) {
|
|
// No valid username, skip the response.
|
|
return;
|
|
}
|
|
|
|
// Fill in the response message.
|
|
StunMessage response;
|
|
response.SetType(STUN_BINDING_RESPONSE);
|
|
response.SetTransactionID(request->transaction_id());
|
|
const StunUInt32Attribute* retransmit_attr =
|
|
request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
|
|
if (retransmit_attr) {
|
|
// Inherit the incoming retransmit value in the response so the other side
|
|
// can see our view of lost pings.
|
|
response.AddAttribute(new StunUInt32Attribute(
|
|
STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value()));
|
|
|
|
if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) {
|
|
LOG_J(LS_INFO, this)
|
|
<< "Received a remote ping with high retransmit count: "
|
|
<< retransmit_attr->value();
|
|
}
|
|
}
|
|
|
|
response.AddAttribute(
|
|
new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr));
|
|
response.AddMessageIntegrity(password_);
|
|
response.AddFingerprint();
|
|
|
|
// Send the response message.
|
|
rtc::ByteBufferWriter buf;
|
|
response.Write(&buf);
|
|
rtc::PacketOptions options(DefaultDscpValue());
|
|
auto err = SendTo(buf.Data(), buf.Length(), addr, options, false);
|
|
if (err < 0) {
|
|
LOG_J(LS_ERROR, this)
|
|
<< "Failed to send STUN ping response"
|
|
<< ", to=" << addr.ToSensitiveString()
|
|
<< ", err=" << err
|
|
<< ", id=" << rtc::hex_encode(response.transaction_id());
|
|
} else {
|
|
// Log at LS_INFO if we send a stun ping response on an unwritable
|
|
// connection.
|
|
Connection* conn = GetConnection(addr);
|
|
rtc::LoggingSeverity sev = (conn && !conn->writable()) ?
|
|
rtc::LS_INFO : rtc::LS_VERBOSE;
|
|
LOG_JV(sev, this)
|
|
<< "Sent STUN ping response"
|
|
<< ", to=" << addr.ToSensitiveString()
|
|
<< ", id=" << rtc::hex_encode(response.transaction_id());
|
|
|
|
conn->stats_.sent_ping_responses++;
|
|
}
|
|
}
|
|
|
|
void Port::SendBindingErrorResponse(StunMessage* request,
|
|
const rtc::SocketAddress& addr,
|
|
int error_code, const std::string& reason) {
|
|
ASSERT(request->type() == STUN_BINDING_REQUEST);
|
|
|
|
// Fill in the response message.
|
|
StunMessage response;
|
|
response.SetType(STUN_BINDING_ERROR_RESPONSE);
|
|
response.SetTransactionID(request->transaction_id());
|
|
|
|
// When doing GICE, we need to write out the error code incorrectly to
|
|
// maintain backwards compatiblility.
|
|
StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode();
|
|
error_attr->SetCode(error_code);
|
|
error_attr->SetReason(reason);
|
|
response.AddAttribute(error_attr);
|
|
|
|
// Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY,
|
|
// because we don't have enough information to determine the shared secret.
|
|
if (error_code != STUN_ERROR_BAD_REQUEST &&
|
|
error_code != STUN_ERROR_UNAUTHORIZED)
|
|
response.AddMessageIntegrity(password_);
|
|
response.AddFingerprint();
|
|
|
|
// Send the response message.
|
|
rtc::ByteBufferWriter buf;
|
|
response.Write(&buf);
|
|
rtc::PacketOptions options(DefaultDscpValue());
|
|
SendTo(buf.Data(), buf.Length(), addr, options, false);
|
|
LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason
|
|
<< " to " << addr.ToSensitiveString();
|
|
}
|
|
|
|
void Port::OnMessage(rtc::Message *pmsg) {
|
|
ASSERT(pmsg->message_id == MSG_DEAD);
|
|
if (dead()) {
|
|
Destroy();
|
|
}
|
|
}
|
|
|
|
void Port::OnNetworkInactive(const rtc::Network* network) {
|
|
ASSERT(network == network_);
|
|
SignalNetworkInactive(this);
|
|
}
|
|
|
|
void Port::OnNetworkTypeChanged(const rtc::Network* network) {
|
|
ASSERT(network == network_);
|
|
|
|
UpdateNetworkCost();
|
|
}
|
|
|
|
std::string Port::ToString() const {
|
|
std::stringstream ss;
|
|
ss << "Port[" << std::hex << this << std::dec << ":" << content_name_ << ":"
|
|
<< component_ << ":" << generation_ << ":" << type_ << ":"
|
|
<< network_->ToString() << "]";
|
|
return ss.str();
|
|
}
|
|
|
|
// TODO(honghaiz): Make the network cost configurable from user setting.
|
|
void Port::UpdateNetworkCost() {
|
|
uint16_t new_cost = network_->GetCost();
|
|
if (network_cost_ == new_cost) {
|
|
return;
|
|
}
|
|
LOG(LS_INFO) << "Network cost changed from " << network_cost_
|
|
<< " to " << new_cost
|
|
<< ". Number of candidates created: " << candidates_.size()
|
|
<< ". Number of connections created: " << connections_.size();
|
|
network_cost_ = new_cost;
|
|
for (cricket::Candidate& candidate : candidates_) {
|
|
candidate.set_network_cost(network_cost_);
|
|
}
|
|
// Network cost change will affect the connection selection criteria.
|
|
// Signal the connection state change on each connection to force a
|
|
// re-sort in P2PTransportChannel.
|
|
for (auto kv : connections_) {
|
|
Connection* conn = kv.second;
|
|
conn->SignalStateChange(conn);
|
|
}
|
|
}
|
|
|
|
void Port::EnablePortPackets() {
|
|
enable_port_packets_ = true;
|
|
}
|
|
|
|
void Port::OnConnectionDestroyed(Connection* conn) {
|
|
AddressMap::iterator iter =
|
|
connections_.find(conn->remote_candidate().address());
|
|
ASSERT(iter != connections_.end());
|
|
connections_.erase(iter);
|
|
HandleConnectionDestroyed(conn);
|
|
|
|
// On the controlled side, ports time out after all connections fail.
|
|
// Note: If a new connection is added after this message is posted, but it
|
|
// fails and is removed before kPortTimeoutDelay, then this message will
|
|
// still cause the Port to be destroyed.
|
|
if (dead()) {
|
|
thread_->PostDelayed(RTC_FROM_HERE, timeout_delay_, this, MSG_DEAD);
|
|
}
|
|
}
|
|
|
|
void Port::Destroy() {
|
|
ASSERT(connections_.empty());
|
|
LOG_J(LS_INFO, this) << "Port deleted";
|
|
SignalDestroyed(this);
|
|
delete this;
|
|
}
|
|
|
|
const std::string Port::username_fragment() const {
|
|
return ice_username_fragment_;
|
|
}
|
|
|
|
// A ConnectionRequest is a simple STUN ping used to determine writability.
|
|
class ConnectionRequest : public StunRequest {
|
|
public:
|
|
explicit ConnectionRequest(Connection* connection)
|
|
: StunRequest(new IceMessage()),
|
|
connection_(connection) {
|
|
}
|
|
|
|
virtual ~ConnectionRequest() {
|
|
}
|
|
|
|
void Prepare(StunMessage* request) override {
|
|
request->SetType(STUN_BINDING_REQUEST);
|
|
std::string username;
|
|
connection_->port()->CreateStunUsername(
|
|
connection_->remote_candidate().username(), &username);
|
|
request->AddAttribute(
|
|
new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
|
|
|
|
// connection_ already holds this ping, so subtract one from count.
|
|
if (connection_->port()->send_retransmit_count_attribute()) {
|
|
request->AddAttribute(new StunUInt32Attribute(
|
|
STUN_ATTR_RETRANSMIT_COUNT,
|
|
static_cast<uint32_t>(connection_->pings_since_last_response_.size() -
|
|
1)));
|
|
}
|
|
uint32_t network_info = connection_->port()->Network()->id();
|
|
network_info = (network_info << 16) | connection_->port()->network_cost();
|
|
request->AddAttribute(
|
|
new StunUInt32Attribute(STUN_ATTR_NETWORK_INFO, network_info));
|
|
|
|
// Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role.
|
|
if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) {
|
|
request->AddAttribute(new StunUInt64Attribute(
|
|
STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker()));
|
|
// Since we are trying aggressive nomination, sending USE-CANDIDATE
|
|
// attribute in every ping.
|
|
// If we are dealing with a ice-lite end point, nomination flag
|
|
// in Connection will be set to false by default. Once the connection
|
|
// becomes "best connection", nomination flag will be turned on.
|
|
if (connection_->use_candidate_attr()) {
|
|
request->AddAttribute(new StunByteStringAttribute(
|
|
STUN_ATTR_USE_CANDIDATE));
|
|
}
|
|
} else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) {
|
|
request->AddAttribute(new StunUInt64Attribute(
|
|
STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker()));
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
|
|
// Adding PRIORITY Attribute.
|
|
// Changing the type preference to Peer Reflexive and local preference
|
|
// and component id information is unchanged from the original priority.
|
|
// priority = (2^24)*(type preference) +
|
|
// (2^8)*(local preference) +
|
|
// (2^0)*(256 - component ID)
|
|
uint32_t prflx_priority =
|
|
ICE_TYPE_PREFERENCE_PRFLX << 24 |
|
|
(connection_->local_candidate().priority() & 0x00FFFFFF);
|
|
request->AddAttribute(
|
|
new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority));
|
|
|
|
// Adding Message Integrity attribute.
|
|
request->AddMessageIntegrity(connection_->remote_candidate().password());
|
|
// Adding Fingerprint.
|
|
request->AddFingerprint();
|
|
}
|
|
|
|
void OnResponse(StunMessage* response) override {
|
|
connection_->OnConnectionRequestResponse(this, response);
|
|
}
|
|
|
|
void OnErrorResponse(StunMessage* response) override {
|
|
connection_->OnConnectionRequestErrorResponse(this, response);
|
|
}
|
|
|
|
void OnTimeout() override {
|
|
connection_->OnConnectionRequestTimeout(this);
|
|
}
|
|
|
|
void OnSent() override {
|
|
connection_->OnConnectionRequestSent(this);
|
|
// Each request is sent only once. After a single delay , the request will
|
|
// time out.
|
|
timeout_ = true;
|
|
}
|
|
|
|
int resend_delay() override {
|
|
return CONNECTION_RESPONSE_TIMEOUT;
|
|
}
|
|
|
|
private:
|
|
Connection* connection_;
|
|
};
|
|
|
|
//
|
|
// Connection
|
|
//
|
|
|
|
Connection::Connection(Port* port,
|
|
size_t index,
|
|
const Candidate& remote_candidate)
|
|
: port_(port),
|
|
local_candidate_index_(index),
|
|
remote_candidate_(remote_candidate),
|
|
write_state_(STATE_WRITE_INIT),
|
|
receiving_(false),
|
|
connected_(true),
|
|
pruned_(false),
|
|
use_candidate_attr_(false),
|
|
nominated_(false),
|
|
remote_ice_mode_(ICEMODE_FULL),
|
|
requests_(port->thread()),
|
|
rtt_(DEFAULT_RTT),
|
|
last_ping_sent_(0),
|
|
last_ping_received_(0),
|
|
last_data_received_(0),
|
|
last_ping_response_received_(0),
|
|
recv_rate_tracker_(100, 10u),
|
|
send_rate_tracker_(100, 10u),
|
|
reported_(false),
|
|
state_(STATE_WAITING),
|
|
receiving_timeout_(WEAK_CONNECTION_RECEIVE_TIMEOUT),
|
|
time_created_ms_(rtc::TimeMillis()) {
|
|
// All of our connections start in WAITING state.
|
|
// TODO(mallinath) - Start connections from STATE_FROZEN.
|
|
// Wire up to send stun packets
|
|
requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket);
|
|
LOG_J(LS_INFO, this) << "Connection created";
|
|
}
|
|
|
|
Connection::~Connection() {
|
|
}
|
|
|
|
const Candidate& Connection::local_candidate() const {
|
|
ASSERT(local_candidate_index_ < port_->Candidates().size());
|
|
return port_->Candidates()[local_candidate_index_];
|
|
}
|
|
|
|
const Candidate& Connection::remote_candidate() const {
|
|
return remote_candidate_;
|
|
}
|
|
|
|
uint64_t Connection::priority() const {
|
|
uint64_t priority = 0;
|
|
// RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs
|
|
// Let G be the priority for the candidate provided by the controlling
|
|
// agent. Let D be the priority for the candidate provided by the
|
|
// controlled agent.
|
|
// pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
|
|
IceRole role = port_->GetIceRole();
|
|
if (role != ICEROLE_UNKNOWN) {
|
|
uint32_t g = 0;
|
|
uint32_t d = 0;
|
|
if (role == ICEROLE_CONTROLLING) {
|
|
g = local_candidate().priority();
|
|
d = remote_candidate_.priority();
|
|
} else {
|
|
g = remote_candidate_.priority();
|
|
d = local_candidate().priority();
|
|
}
|
|
priority = std::min(g, d);
|
|
priority = priority << 32;
|
|
priority += 2 * std::max(g, d) + (g > d ? 1 : 0);
|
|
}
|
|
return priority;
|
|
}
|
|
|
|
void Connection::set_write_state(WriteState value) {
|
|
WriteState old_value = write_state_;
|
|
write_state_ = value;
|
|
if (value != old_value) {
|
|
LOG_J(LS_VERBOSE, this) << "set_write_state from: " << old_value << " to "
|
|
<< value;
|
|
SignalStateChange(this);
|
|
}
|
|
}
|
|
|
|
void Connection::set_receiving(bool value) {
|
|
if (value != receiving_) {
|
|
LOG_J(LS_VERBOSE, this) << "set_receiving to " << value;
|
|
receiving_ = value;
|
|
SignalStateChange(this);
|
|
}
|
|
}
|
|
|
|
void Connection::set_state(State state) {
|
|
State old_state = state_;
|
|
state_ = state;
|
|
if (state != old_state) {
|
|
LOG_J(LS_VERBOSE, this) << "set_state";
|
|
}
|
|
}
|
|
|
|
void Connection::set_connected(bool value) {
|
|
bool old_value = connected_;
|
|
connected_ = value;
|
|
if (value != old_value) {
|
|
LOG_J(LS_VERBOSE, this) << "set_connected from: " << old_value << " to "
|
|
<< value;
|
|
}
|
|
}
|
|
|
|
void Connection::set_use_candidate_attr(bool enable) {
|
|
use_candidate_attr_ = enable;
|
|
}
|
|
|
|
void Connection::OnSendStunPacket(const void* data, size_t size,
|
|
StunRequest* req) {
|
|
rtc::PacketOptions options(port_->DefaultDscpValue());
|
|
auto err = port_->SendTo(
|
|
data, size, remote_candidate_.address(), options, false);
|
|
if (err < 0) {
|
|
LOG_J(LS_WARNING, this) << "Failed to send STUN ping "
|
|
<< " err=" << err
|
|
<< " id=" << rtc::hex_encode(req->id());
|
|
}
|
|
}
|
|
|
|
void Connection::OnReadPacket(
|
|
const char* data, size_t size, const rtc::PacketTime& packet_time) {
|
|
std::unique_ptr<IceMessage> msg;
|
|
std::string remote_ufrag;
|
|
const rtc::SocketAddress& addr(remote_candidate_.address());
|
|
if (!port_->GetStunMessage(data, size, addr, &msg, &remote_ufrag)) {
|
|
// The packet did not parse as a valid STUN message
|
|
// This is a data packet, pass it along.
|
|
set_receiving(true);
|
|
last_data_received_ = rtc::TimeMillis();
|
|
recv_rate_tracker_.AddSamples(size);
|
|
SignalReadPacket(this, data, size, packet_time);
|
|
|
|
// If timed out sending writability checks, start up again
|
|
if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) {
|
|
LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. "
|
|
<< "Resetting state to STATE_WRITE_INIT.";
|
|
set_write_state(STATE_WRITE_INIT);
|
|
}
|
|
} else if (!msg) {
|
|
// The packet was STUN, but failed a check and was handled internally.
|
|
} else {
|
|
// The packet is STUN and passed the Port checks.
|
|
// Perform our own checks to ensure this packet is valid.
|
|
// If this is a STUN request, then update the receiving bit and respond.
|
|
// If this is a STUN response, then update the writable bit.
|
|
// Log at LS_INFO if we receive a ping on an unwritable connection.
|
|
rtc::LoggingSeverity sev = (!writable() ? rtc::LS_INFO : rtc::LS_VERBOSE);
|
|
switch (msg->type()) {
|
|
case STUN_BINDING_REQUEST:
|
|
LOG_JV(sev, this) << "Received STUN ping"
|
|
<< ", id=" << rtc::hex_encode(msg->transaction_id());
|
|
|
|
if (remote_ufrag == remote_candidate_.username()) {
|
|
HandleBindingRequest(msg.get());
|
|
} else {
|
|
// The packet had the right local username, but the remote username
|
|
// was not the right one for the remote address.
|
|
LOG_J(LS_ERROR, this)
|
|
<< "Received STUN request with bad remote username "
|
|
<< remote_ufrag;
|
|
port_->SendBindingErrorResponse(msg.get(), addr,
|
|
STUN_ERROR_UNAUTHORIZED,
|
|
STUN_ERROR_REASON_UNAUTHORIZED);
|
|
|
|
}
|
|
break;
|
|
|
|
// Response from remote peer. Does it match request sent?
|
|
// This doesn't just check, it makes callbacks if transaction
|
|
// id's match.
|
|
case STUN_BINDING_RESPONSE:
|
|
case STUN_BINDING_ERROR_RESPONSE:
|
|
if (msg->ValidateMessageIntegrity(
|
|
data, size, remote_candidate().password())) {
|
|
requests_.CheckResponse(msg.get());
|
|
}
|
|
// Otherwise silently discard the response message.
|
|
break;
|
|
|
|
// Remote end point sent an STUN indication instead of regular binding
|
|
// request. In this case |last_ping_received_| will be updated but no
|
|
// response will be sent.
|
|
case STUN_BINDING_INDICATION:
|
|
ReceivedPing();
|
|
break;
|
|
|
|
default:
|
|
ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Connection::HandleBindingRequest(IceMessage* msg) {
|
|
// This connection should now be receiving.
|
|
ReceivedPing();
|
|
|
|
const rtc::SocketAddress& remote_addr = remote_candidate_.address();
|
|
const std::string& remote_ufrag = remote_candidate_.username();
|
|
// Check for role conflicts.
|
|
if (!port_->MaybeIceRoleConflict(remote_addr, msg, remote_ufrag)) {
|
|
// Received conflicting role from the peer.
|
|
LOG(LS_INFO) << "Received conflicting role from the peer.";
|
|
return;
|
|
}
|
|
|
|
stats_.recv_ping_requests++;
|
|
|
|
// This is a validated stun request from remote peer.
|
|
port_->SendBindingResponse(msg, remote_addr);
|
|
|
|
// If it timed out on writing check, start up again
|
|
if (!pruned_ && write_state_ == STATE_WRITE_TIMEOUT) {
|
|
set_write_state(STATE_WRITE_INIT);
|
|
}
|
|
|
|
if (port_->GetIceRole() == ICEROLE_CONTROLLED) {
|
|
const StunByteStringAttribute* use_candidate_attr =
|
|
msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
|
|
if (use_candidate_attr) {
|
|
set_nominated(true);
|
|
SignalNominated(this);
|
|
}
|
|
}
|
|
// Set the remote cost if the network_info attribute is available.
|
|
// Note: If packets are re-ordered, we may get incorrect network cost
|
|
// temporarily, but it should get the correct value shortly after that.
|
|
const StunUInt32Attribute* network_attr =
|
|
msg->GetUInt32(STUN_ATTR_NETWORK_INFO);
|
|
if (network_attr) {
|
|
uint32_t network_info = network_attr->value();
|
|
uint16_t network_cost = static_cast<uint16_t>(network_info);
|
|
if (network_cost != remote_candidate_.network_cost()) {
|
|
remote_candidate_.set_network_cost(network_cost);
|
|
// Network cost change will affect the connection ranking, so signal
|
|
// state change to force a re-sort in P2PTransportChannel.
|
|
SignalStateChange(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Connection::OnReadyToSend() {
|
|
if (write_state_ == STATE_WRITABLE) {
|
|
SignalReadyToSend(this);
|
|
}
|
|
}
|
|
|
|
void Connection::Prune() {
|
|
if (!pruned_ || active()) {
|
|
LOG_J(LS_INFO, this) << "Connection pruned";
|
|
pruned_ = true;
|
|
requests_.Clear();
|
|
set_write_state(STATE_WRITE_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
void Connection::Destroy() {
|
|
LOG_J(LS_VERBOSE, this) << "Connection destroyed";
|
|
port_->thread()->Post(RTC_FROM_HERE, this, MSG_DELETE);
|
|
}
|
|
|
|
void Connection::FailAndDestroy() {
|
|
set_state(Connection::STATE_FAILED);
|
|
Destroy();
|
|
}
|
|
|
|
void Connection::PrintPingsSinceLastResponse(std::string* s, size_t max) {
|
|
std::ostringstream oss;
|
|
oss << std::boolalpha;
|
|
if (pings_since_last_response_.size() > max) {
|
|
for (size_t i = 0; i < max; i++) {
|
|
const SentPing& ping = pings_since_last_response_[i];
|
|
oss << rtc::hex_encode(ping.id) << " ";
|
|
}
|
|
oss << "... " << (pings_since_last_response_.size() - max) << " more";
|
|
} else {
|
|
for (const SentPing& ping : pings_since_last_response_) {
|
|
oss << rtc::hex_encode(ping.id) << " ";
|
|
}
|
|
}
|
|
*s = oss.str();
|
|
}
|
|
|
|
void Connection::UpdateState(int64_t now) {
|
|
int rtt = ConservativeRTTEstimate(rtt_);
|
|
|
|
if (LOG_CHECK_LEVEL(LS_VERBOSE)) {
|
|
std::string pings;
|
|
PrintPingsSinceLastResponse(&pings, 5);
|
|
LOG_J(LS_VERBOSE, this) << "UpdateState()"
|
|
<< ", ms since last received response="
|
|
<< now - last_ping_response_received_
|
|
<< ", ms since last received data="
|
|
<< now - last_data_received_
|
|
<< ", rtt=" << rtt
|
|
<< ", pings_since_last_response=" << pings;
|
|
}
|
|
|
|
// Check the writable state. (The order of these checks is important.)
|
|
//
|
|
// Before becoming unwritable, we allow for a fixed number of pings to fail
|
|
// (i.e., receive no response). We also have to give the response time to
|
|
// get back, so we include a conservative estimate of this.
|
|
//
|
|
// Before timing out writability, we give a fixed amount of time. This is to
|
|
// allow for changes in network conditions.
|
|
|
|
if ((write_state_ == STATE_WRITABLE) &&
|
|
TooManyFailures(pings_since_last_response_,
|
|
CONNECTION_WRITE_CONNECT_FAILURES,
|
|
rtt,
|
|
now) &&
|
|
TooLongWithoutResponse(pings_since_last_response_,
|
|
CONNECTION_WRITE_CONNECT_TIMEOUT,
|
|
now)) {
|
|
uint32_t max_pings = CONNECTION_WRITE_CONNECT_FAILURES;
|
|
LOG_J(LS_INFO, this) << "Unwritable after " << max_pings
|
|
<< " ping failures and "
|
|
<< now - pings_since_last_response_[0].sent_time
|
|
<< " ms without a response,"
|
|
<< " ms since last received ping="
|
|
<< now - last_ping_received_
|
|
<< " ms since last received data="
|
|
<< now - last_data_received_
|
|
<< " rtt=" << rtt;
|
|
set_write_state(STATE_WRITE_UNRELIABLE);
|
|
}
|
|
if ((write_state_ == STATE_WRITE_UNRELIABLE ||
|
|
write_state_ == STATE_WRITE_INIT) &&
|
|
TooLongWithoutResponse(pings_since_last_response_,
|
|
CONNECTION_WRITE_TIMEOUT,
|
|
now)) {
|
|
LOG_J(LS_INFO, this) << "Timed out after "
|
|
<< now - pings_since_last_response_[0].sent_time
|
|
<< " ms without a response"
|
|
<< ", rtt=" << rtt;
|
|
set_write_state(STATE_WRITE_TIMEOUT);
|
|
}
|
|
|
|
// Check the receiving state.
|
|
int64_t last_recv_time = last_received();
|
|
bool receiving = now <= last_recv_time + receiving_timeout_;
|
|
set_receiving(receiving);
|
|
if (dead(now)) {
|
|
Destroy();
|
|
}
|
|
}
|
|
|
|
void Connection::Ping(int64_t now) {
|
|
last_ping_sent_ = now;
|
|
ConnectionRequest *req = new ConnectionRequest(this);
|
|
pings_since_last_response_.push_back(SentPing(req->id(), now));
|
|
LOG_J(LS_VERBOSE, this) << "Sending STUN ping "
|
|
<< ", id=" << rtc::hex_encode(req->id());
|
|
requests_.Send(req);
|
|
state_ = STATE_INPROGRESS;
|
|
num_pings_sent_++;
|
|
}
|
|
|
|
void Connection::ReceivedPing() {
|
|
set_receiving(true);
|
|
last_ping_received_ = rtc::TimeMillis();
|
|
}
|
|
|
|
void Connection::ReceivedPingResponse() {
|
|
// We've already validated that this is a STUN binding response with
|
|
// the correct local and remote username for this connection.
|
|
// So if we're not already, become writable. We may be bringing a pruned
|
|
// connection back to life, but if we don't really want it, we can always
|
|
// prune it again.
|
|
set_receiving(true);
|
|
set_write_state(STATE_WRITABLE);
|
|
set_state(STATE_SUCCEEDED);
|
|
pings_since_last_response_.clear();
|
|
last_ping_response_received_ = rtc::TimeMillis();
|
|
}
|
|
|
|
bool Connection::dead(int64_t now) const {
|
|
if (last_received() > 0) {
|
|
// If it has ever received anything, we keep it alive until it hasn't
|
|
// received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT. This covers the
|
|
// normal case of a successfully used connection that stops working. This
|
|
// also allows a remote peer to continue pinging over a locally inactive
|
|
// (pruned) connection.
|
|
return (now > (last_received() + DEAD_CONNECTION_RECEIVE_TIMEOUT));
|
|
}
|
|
|
|
if (active()) {
|
|
// If it has never received anything, keep it alive as long as it is
|
|
// actively pinging and not pruned. Otherwise, the connection might be
|
|
// deleted before it has a chance to ping. This is the normal case for a
|
|
// new connection that is pinging but hasn't received anything yet.
|
|
return false;
|
|
}
|
|
|
|
// If it has never received anything and is not actively pinging (pruned), we
|
|
// keep it around for at least MIN_CONNECTION_LIFETIME to prevent connections
|
|
// from being pruned too quickly during a network change event when two
|
|
// networks would be up simultaneously but only for a brief period.
|
|
return now > (time_created_ms_ + MIN_CONNECTION_LIFETIME);
|
|
}
|
|
|
|
std::string Connection::ToDebugId() const {
|
|
std::stringstream ss;
|
|
ss << std::hex << this;
|
|
return ss.str();
|
|
}
|
|
|
|
uint32_t Connection::ComputeNetworkCost() const {
|
|
// TODO(honghaiz): Will add rtt as part of the network cost.
|
|
return port()->network_cost() + remote_candidate_.network_cost();
|
|
}
|
|
|
|
std::string Connection::ToString() const {
|
|
const char CONNECT_STATE_ABBREV[2] = {
|
|
'-', // not connected (false)
|
|
'C', // connected (true)
|
|
};
|
|
const char RECEIVE_STATE_ABBREV[2] = {
|
|
'-', // not receiving (false)
|
|
'R', // receiving (true)
|
|
};
|
|
const char WRITE_STATE_ABBREV[4] = {
|
|
'W', // STATE_WRITABLE
|
|
'w', // STATE_WRITE_UNRELIABLE
|
|
'-', // STATE_WRITE_INIT
|
|
'x', // STATE_WRITE_TIMEOUT
|
|
};
|
|
const std::string ICESTATE[4] = {
|
|
"W", // STATE_WAITING
|
|
"I", // STATE_INPROGRESS
|
|
"S", // STATE_SUCCEEDED
|
|
"F" // STATE_FAILED
|
|
};
|
|
const Candidate& local = local_candidate();
|
|
const Candidate& remote = remote_candidate();
|
|
std::stringstream ss;
|
|
ss << "Conn[" << ToDebugId()
|
|
<< ":" << port_->content_name()
|
|
<< ":" << local.id() << ":" << local.component()
|
|
<< ":" << local.generation()
|
|
<< ":" << local.type() << ":" << local.protocol()
|
|
<< ":" << local.address().ToSensitiveString()
|
|
<< "->" << remote.id() << ":" << remote.component()
|
|
<< ":" << remote.priority()
|
|
<< ":" << remote.type() << ":"
|
|
<< remote.protocol() << ":" << remote.address().ToSensitiveString() << "|"
|
|
<< CONNECT_STATE_ABBREV[connected()]
|
|
<< RECEIVE_STATE_ABBREV[receiving()]
|
|
<< WRITE_STATE_ABBREV[write_state()]
|
|
<< ICESTATE[state()] << "|"
|
|
<< priority() << "|";
|
|
if (rtt_ < DEFAULT_RTT) {
|
|
ss << rtt_ << "]";
|
|
} else {
|
|
ss << "-]";
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
std::string Connection::ToSensitiveString() const {
|
|
return ToString();
|
|
}
|
|
|
|
void Connection::OnConnectionRequestResponse(ConnectionRequest* request,
|
|
StunMessage* response) {
|
|
// Log at LS_INFO if we receive a ping response on an unwritable
|
|
// connection.
|
|
rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE;
|
|
|
|
int rtt = request->Elapsed();
|
|
|
|
ReceivedPingResponse();
|
|
|
|
if (LOG_CHECK_LEVEL_V(sev)) {
|
|
bool use_candidate = (
|
|
response->GetByteString(STUN_ATTR_USE_CANDIDATE) != nullptr);
|
|
std::string pings;
|
|
PrintPingsSinceLastResponse(&pings, 5);
|
|
LOG_JV(sev, this) << "Received STUN ping response"
|
|
<< ", id=" << rtc::hex_encode(request->id())
|
|
<< ", code=0" // Makes logging easier to parse.
|
|
<< ", rtt=" << rtt
|
|
<< ", use_candidate=" << use_candidate
|
|
<< ", pings_since_last_response=" << pings;
|
|
}
|
|
|
|
rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1);
|
|
stats_.recv_ping_responses++;
|
|
|
|
MaybeAddPrflxCandidate(request, response);
|
|
}
|
|
|
|
void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request,
|
|
StunMessage* response) {
|
|
const StunErrorCodeAttribute* error_attr = response->GetErrorCode();
|
|
int error_code = STUN_ERROR_GLOBAL_FAILURE;
|
|
if (error_attr) {
|
|
error_code = error_attr->code();
|
|
}
|
|
|
|
LOG_J(LS_INFO, this) << "Received STUN error response"
|
|
<< " id=" << rtc::hex_encode(request->id())
|
|
<< " code=" << error_code
|
|
<< " rtt=" << request->Elapsed();
|
|
|
|
if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE ||
|
|
error_code == STUN_ERROR_SERVER_ERROR ||
|
|
error_code == STUN_ERROR_UNAUTHORIZED) {
|
|
// Recoverable error, retry
|
|
} else if (error_code == STUN_ERROR_STALE_CREDENTIALS) {
|
|
// Race failure, retry
|
|
} else if (error_code == STUN_ERROR_ROLE_CONFLICT) {
|
|
HandleRoleConflictFromPeer();
|
|
} else {
|
|
// This is not a valid connection.
|
|
LOG_J(LS_ERROR, this) << "Received STUN error response, code="
|
|
<< error_code << "; killing connection";
|
|
FailAndDestroy();
|
|
}
|
|
}
|
|
|
|
void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) {
|
|
// Log at LS_INFO if we miss a ping on a writable connection.
|
|
rtc::LoggingSeverity sev = writable() ? rtc::LS_INFO : rtc::LS_VERBOSE;
|
|
LOG_JV(sev, this) << "Timing-out STUN ping "
|
|
<< rtc::hex_encode(request->id())
|
|
<< " after " << request->Elapsed() << " ms";
|
|
}
|
|
|
|
void Connection::OnConnectionRequestSent(ConnectionRequest* request) {
|
|
// Log at LS_INFO if we send a ping on an unwritable connection.
|
|
rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE;
|
|
bool use_candidate = use_candidate_attr();
|
|
LOG_JV(sev, this) << "Sent STUN ping"
|
|
<< ", id=" << rtc::hex_encode(request->id())
|
|
<< ", use_candidate=" << use_candidate;
|
|
stats_.sent_ping_requests_total++;
|
|
if (stats_.recv_ping_responses == 0) {
|
|
stats_.sent_ping_requests_before_first_response++;
|
|
}
|
|
}
|
|
|
|
void Connection::HandleRoleConflictFromPeer() {
|
|
port_->SignalRoleConflict(port_);
|
|
}
|
|
|
|
void Connection::MaybeSetRemoteIceCredentialsAndGeneration(
|
|
const std::string& ice_ufrag,
|
|
const std::string& ice_pwd,
|
|
int generation) {
|
|
if (remote_candidate_.username() == ice_ufrag &&
|
|
remote_candidate_.password().empty()) {
|
|
remote_candidate_.set_password(ice_pwd);
|
|
}
|
|
// TODO(deadbeef): A value of '0' for the generation is used for both
|
|
// generation 0 and "generation unknown". It should be changed to an
|
|
// rtc::Optional to fix this.
|
|
if (remote_candidate_.username() == ice_ufrag &&
|
|
remote_candidate_.password() == ice_pwd &&
|
|
remote_candidate_.generation() == 0) {
|
|
remote_candidate_.set_generation(generation);
|
|
}
|
|
}
|
|
|
|
void Connection::MaybeUpdatePeerReflexiveCandidate(
|
|
const Candidate& new_candidate) {
|
|
if (remote_candidate_.type() == PRFLX_PORT_TYPE &&
|
|
new_candidate.type() != PRFLX_PORT_TYPE &&
|
|
remote_candidate_.protocol() == new_candidate.protocol() &&
|
|
remote_candidate_.address() == new_candidate.address() &&
|
|
remote_candidate_.username() == new_candidate.username() &&
|
|
remote_candidate_.password() == new_candidate.password() &&
|
|
remote_candidate_.generation() == new_candidate.generation()) {
|
|
remote_candidate_ = new_candidate;
|
|
}
|
|
}
|
|
|
|
void Connection::OnMessage(rtc::Message *pmsg) {
|
|
ASSERT(pmsg->message_id == MSG_DELETE);
|
|
LOG(LS_INFO) << "Connection deleted with number of pings sent: "
|
|
<< num_pings_sent_;
|
|
SignalDestroyed(this);
|
|
delete this;
|
|
}
|
|
|
|
int64_t Connection::last_received() const {
|
|
return std::max(last_data_received_,
|
|
std::max(last_ping_received_, last_ping_response_received_));
|
|
}
|
|
|
|
ConnectionInfo Connection::stats() {
|
|
stats_.recv_bytes_second = round(recv_rate_tracker_.ComputeRate());
|
|
stats_.recv_total_bytes = recv_rate_tracker_.TotalSampleCount();
|
|
stats_.sent_bytes_second = round(send_rate_tracker_.ComputeRate());
|
|
stats_.sent_total_bytes = send_rate_tracker_.TotalSampleCount();
|
|
return stats_;
|
|
}
|
|
|
|
void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request,
|
|
StunMessage* response) {
|
|
// RFC 5245
|
|
// The agent checks the mapped address from the STUN response. If the
|
|
// transport address does not match any of the local candidates that the
|
|
// agent knows about, the mapped address represents a new candidate -- a
|
|
// peer reflexive candidate.
|
|
const StunAddressAttribute* addr =
|
|
response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
if (!addr) {
|
|
LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
|
|
<< "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the "
|
|
<< "stun response message";
|
|
return;
|
|
}
|
|
|
|
bool known_addr = false;
|
|
for (size_t i = 0; i < port_->Candidates().size(); ++i) {
|
|
if (port_->Candidates()[i].address() == addr->GetAddress()) {
|
|
known_addr = true;
|
|
break;
|
|
}
|
|
}
|
|
if (known_addr) {
|
|
return;
|
|
}
|
|
|
|
// RFC 5245
|
|
// Its priority is set equal to the value of the PRIORITY attribute
|
|
// in the Binding request.
|
|
const StunUInt32Attribute* priority_attr =
|
|
request->msg()->GetUInt32(STUN_ATTR_PRIORITY);
|
|
if (!priority_attr) {
|
|
LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
|
|
<< "No STUN_ATTR_PRIORITY found in the "
|
|
<< "stun response message";
|
|
return;
|
|
}
|
|
const uint32_t priority = priority_attr->value();
|
|
std::string id = rtc::CreateRandomString(8);
|
|
|
|
Candidate new_local_candidate;
|
|
new_local_candidate.set_id(id);
|
|
new_local_candidate.set_component(local_candidate().component());
|
|
new_local_candidate.set_type(PRFLX_PORT_TYPE);
|
|
new_local_candidate.set_protocol(local_candidate().protocol());
|
|
new_local_candidate.set_address(addr->GetAddress());
|
|
new_local_candidate.set_priority(priority);
|
|
new_local_candidate.set_username(local_candidate().username());
|
|
new_local_candidate.set_password(local_candidate().password());
|
|
new_local_candidate.set_network_name(local_candidate().network_name());
|
|
new_local_candidate.set_network_type(local_candidate().network_type());
|
|
new_local_candidate.set_related_address(local_candidate().address());
|
|
new_local_candidate.set_foundation(ComputeFoundation(
|
|
PRFLX_PORT_TYPE, local_candidate().protocol(),
|
|
local_candidate().relay_protocol(), local_candidate().address()));
|
|
new_local_candidate.set_network_id(local_candidate().network_id());
|
|
new_local_candidate.set_network_cost(local_candidate().network_cost());
|
|
|
|
// Change the local candidate of this Connection to the new prflx candidate.
|
|
local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate);
|
|
|
|
// SignalStateChange to force a re-sort in P2PTransportChannel as this
|
|
// Connection's local candidate has changed.
|
|
SignalStateChange(this);
|
|
}
|
|
|
|
ProxyConnection::ProxyConnection(Port* port,
|
|
size_t index,
|
|
const Candidate& remote_candidate)
|
|
: Connection(port, index, remote_candidate) {}
|
|
|
|
int ProxyConnection::Send(const void* data, size_t size,
|
|
const rtc::PacketOptions& options) {
|
|
if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) {
|
|
error_ = EWOULDBLOCK;
|
|
return SOCKET_ERROR;
|
|
}
|
|
stats_.sent_total_packets++;
|
|
int sent = port_->SendTo(data, size, remote_candidate_.address(),
|
|
options, true);
|
|
if (sent <= 0) {
|
|
ASSERT(sent < 0);
|
|
error_ = port_->GetError();
|
|
stats_.sent_discarded_packets++;
|
|
} else {
|
|
send_rate_tracker_.AddSamples(sent);
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
} // namespace cricket
|