/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include // max #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/bind.h" #include "webrtc/base/checks.h" #include "webrtc/base/criticalsection.h" #include "webrtc/base/event.h" #include "webrtc/base/logging.h" #include "webrtc/base/platform_thread.h" #include "webrtc/call.h" #include "webrtc/call/transport_adapter.h" #include "webrtc/common_video/include/frame_callback.h" #include "webrtc/modules/rtp_rtcp/include/rtp_header_parser.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_sender.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h" #include "webrtc/modules/rtp_rtcp/source/rtp_format_vp9.h" #include "webrtc/modules/video_coding/codecs/vp9/include/vp9.h" #include "webrtc/system_wrappers/include/sleep.h" #include "webrtc/test/call_test.h" #include "webrtc/test/configurable_frame_size_encoder.h" #include "webrtc/test/fake_texture_frame.h" #include "webrtc/test/frame_utils.h" #include "webrtc/test/null_transport.h" #include "webrtc/test/testsupport/perf_test.h" #include "webrtc/video/send_statistics_proxy.h" #include "webrtc/video_frame.h" #include "webrtc/video_send_stream.h" namespace webrtc { enum VideoFormat { kGeneric, kVP8, }; void ExpectEqualFramesVector(const std::vector& frames1, const std::vector& frames2); VideoFrame CreateVideoFrame(int width, int height, uint8_t data); class VideoSendStreamTest : public test::CallTest { protected: void TestNackRetransmission(uint32_t retransmit_ssrc, uint8_t retransmit_payload_type); void TestPacketFragmentationSize(VideoFormat format, bool with_fec); void TestVp9NonFlexMode(uint8_t num_temporal_layers, uint8_t num_spatial_layers); }; TEST_F(VideoSendStreamTest, CanStartStartedStream) { Call::Config call_config; CreateSenderCall(call_config); test::NullTransport transport; CreateSendConfig(1, 0, &transport); CreateVideoStreams(); video_send_stream_->Start(); video_send_stream_->Start(); DestroyStreams(); } TEST_F(VideoSendStreamTest, CanStopStoppedStream) { Call::Config call_config; CreateSenderCall(call_config); test::NullTransport transport; CreateSendConfig(1, 0, &transport); CreateVideoStreams(); video_send_stream_->Stop(); video_send_stream_->Stop(); DestroyStreams(); } TEST_F(VideoSendStreamTest, SupportsCName) { static std::string kCName = "PjQatC14dGfbVwGPUOA9IH7RlsFDbWl4AhXEiDsBizo="; class CNameObserver : public test::SendTest { public: CNameObserver() : SendTest(kDefaultTimeoutMs) {} private: Action OnSendRtcp(const uint8_t* packet, size_t length) override { RTCPUtility::RTCPParserV2 parser(packet, length, true); EXPECT_TRUE(parser.IsValid()); RTCPUtility::RTCPPacketTypes packet_type = parser.Begin(); while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) { if (packet_type == RTCPUtility::RTCPPacketTypes::kSdesChunk) { EXPECT_EQ(parser.Packet().CName.CName, kCName); observation_complete_.Set(); } packet_type = parser.Iterate(); } return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.c_name = kCName; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for RTCP with CNAME."; } } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsAbsoluteSendTime) { class AbsoluteSendTimeObserver : public test::SendTest { public: AbsoluteSendTimeObserver() : SendTest(kDefaultTimeoutMs) { EXPECT_TRUE(parser_->RegisterRtpHeaderExtension( kRtpExtensionAbsoluteSendTime, test::kAbsSendTimeExtensionId)); } Action OnSendRtp(const uint8_t* packet, size_t length) override { RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); EXPECT_FALSE(header.extension.hasTransmissionTimeOffset); EXPECT_TRUE(header.extension.hasAbsoluteSendTime); EXPECT_EQ(header.extension.transmissionTimeOffset, 0); EXPECT_GT(header.extension.absoluteSendTime, 0u); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kAbsSendTimeUri, test::kAbsSendTimeExtensionId)); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for single RTP packet."; } } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsTransmissionTimeOffset) { static const int kEncodeDelayMs = 5; class TransmissionTimeOffsetObserver : public test::SendTest { public: TransmissionTimeOffsetObserver() : SendTest(kDefaultTimeoutMs), encoder_(Clock::GetRealTimeClock(), kEncodeDelayMs) { EXPECT_TRUE(parser_->RegisterRtpHeaderExtension( kRtpExtensionTransmissionTimeOffset, test::kTOffsetExtensionId)); } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); EXPECT_TRUE(header.extension.hasTransmissionTimeOffset); EXPECT_FALSE(header.extension.hasAbsoluteSendTime); EXPECT_GT(header.extension.transmissionTimeOffset, 0); EXPECT_EQ(header.extension.absoluteSendTime, 0u); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = &encoder_; send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kTimestampOffsetUri, test::kTOffsetExtensionId)); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for a single RTP packet."; } test::DelayedEncoder encoder_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsTransportWideSequenceNumbers) { static const uint8_t kExtensionId = 13; class TransportWideSequenceNumberObserver : public test::SendTest { public: TransportWideSequenceNumberObserver() : SendTest(kDefaultTimeoutMs), encoder_(Clock::GetRealTimeClock()) { EXPECT_TRUE(parser_->RegisterRtpHeaderExtension( kRtpExtensionTransportSequenceNumber, kExtensionId)); } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); EXPECT_TRUE(header.extension.hasTransportSequenceNumber); EXPECT_FALSE(header.extension.hasTransmissionTimeOffset); EXPECT_FALSE(header.extension.hasAbsoluteSendTime); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = &encoder_; send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kTransportSequenceNumberUri, kExtensionId)); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for a single RTP packet."; } test::FakeEncoder encoder_; } test; RunBaseTest(&test); } class FakeReceiveStatistics : public NullReceiveStatistics { public: FakeReceiveStatistics(uint32_t send_ssrc, uint32_t last_sequence_number, uint32_t cumulative_lost, uint8_t fraction_lost) : lossy_stats_(new LossyStatistician(last_sequence_number, cumulative_lost, fraction_lost)) { stats_map_[send_ssrc] = lossy_stats_.get(); } StatisticianMap GetActiveStatisticians() const override { return stats_map_; } StreamStatistician* GetStatistician(uint32_t ssrc) const override { return lossy_stats_.get(); } private: class LossyStatistician : public StreamStatistician { public: LossyStatistician(uint32_t extended_max_sequence_number, uint32_t cumulative_lost, uint8_t fraction_lost) { stats_.fraction_lost = fraction_lost; stats_.cumulative_lost = cumulative_lost; stats_.extended_max_sequence_number = extended_max_sequence_number; } bool GetStatistics(RtcpStatistics* statistics, bool reset) override { *statistics = stats_; return true; } void GetDataCounters(size_t* bytes_received, uint32_t* packets_received) const override { *bytes_received = 0; *packets_received = 0; } void GetReceiveStreamDataCounters( StreamDataCounters* data_counters) const override {} uint32_t BitrateReceived() const override { return 0; } bool IsRetransmitOfOldPacket(const RTPHeader& header, int64_t min_rtt) const override { return false; } bool IsPacketInOrder(uint16_t sequence_number) const override { return true; } RtcpStatistics stats_; }; std::unique_ptr lossy_stats_; StatisticianMap stats_map_; }; class FecObserver : public test::EndToEndTest { public: FecObserver(bool header_extensions_enabled, bool use_nack, bool expect_red, bool expect_fec, const std::string& codec) : EndToEndTest(VideoSendStreamTest::kDefaultTimeoutMs), payload_name_(codec), use_nack_(use_nack), expect_red_(expect_red), expect_fec_(expect_fec), send_count_(0), received_media_(false), received_fec_(false), header_extensions_enabled_(header_extensions_enabled) { if (codec == "H264") { encoder_.reset(new test::FakeH264Encoder(Clock::GetRealTimeClock())); } else if (codec == "VP8") { encoder_.reset(VideoEncoder::Create(VideoEncoder::EncoderType::kVp8)); } else if (codec == "VP9") { encoder_.reset(VideoEncoder::Create(VideoEncoder::EncoderType::kVp9)); } else { RTC_NOTREACHED(); } } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); ++send_count_; int encapsulated_payload_type = -1; if (header.payloadType == VideoSendStreamTest::kRedPayloadType) { EXPECT_TRUE(expect_red_); encapsulated_payload_type = static_cast(packet[header.headerLength]); if (encapsulated_payload_type != VideoSendStreamTest::kFakeVideoSendPayloadType) { EXPECT_EQ(VideoSendStreamTest::kUlpfecPayloadType, encapsulated_payload_type); } } else { EXPECT_EQ(VideoSendStreamTest::kFakeVideoSendPayloadType, header.payloadType); if (static_cast(header.headerLength + header.paddingLength) < length) { // Not padding-only, media received outside of RED. EXPECT_FALSE(expect_red_); received_media_ = true; } } if (header_extensions_enabled_) { EXPECT_TRUE(header.extension.hasAbsoluteSendTime); uint32_t kHalf24BitsSpace = 0xFFFFFF / 2; if (header.extension.absoluteSendTime <= kHalf24BitsSpace && prev_header_.extension.absoluteSendTime > kHalf24BitsSpace) { // 24 bits wrap. EXPECT_GT(prev_header_.extension.absoluteSendTime, header.extension.absoluteSendTime); } else { EXPECT_GE(header.extension.absoluteSendTime, prev_header_.extension.absoluteSendTime); } EXPECT_TRUE(header.extension.hasTransportSequenceNumber); uint16_t seq_num_diff = header.extension.transportSequenceNumber - prev_header_.extension.transportSequenceNumber; EXPECT_EQ(1, seq_num_diff); } if (encapsulated_payload_type != -1) { if (encapsulated_payload_type == VideoSendStreamTest::kUlpfecPayloadType) { EXPECT_TRUE(expect_fec_); received_fec_ = true; } else { received_media_ = true; } } if (send_count_ > 100 && received_media_) { if (received_fec_ || !expect_fec_) observation_complete_.Set(); } prev_header_ = header; return SEND_PACKET; } test::PacketTransport* CreateSendTransport(Call* sender_call) override { // At low RTT (< kLowRttNackMs) -> NACK only, no FEC. // Configure some network delay. const int kNetworkDelayMs = 100; FakeNetworkPipe::Config config; config.loss_percent = 50; config.queue_delay_ms = kNetworkDelayMs; return new test::PacketTransport(sender_call, this, test::PacketTransport::kSender, config); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { transport_adapter_.reset( new internal::TransportAdapter(send_config->send_transport)); transport_adapter_->Enable(); if (use_nack_) { send_config->rtp.nack.rtp_history_ms = (*receive_configs)[0].rtp.nack.rtp_history_ms = VideoSendStreamTest::kNackRtpHistoryMs; } send_config->encoder_settings.encoder = encoder_.get(); send_config->encoder_settings.payload_name = payload_name_; send_config->rtp.fec.red_payload_type = VideoSendStreamTest::kRedPayloadType; send_config->rtp.fec.ulpfec_payload_type = VideoSendStreamTest::kUlpfecPayloadType; if (header_extensions_enabled_) { send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kAbsSendTimeUri, test::kAbsSendTimeExtensionId)); send_config->rtp.extensions.push_back( RtpExtension(RtpExtension::kTransportSequenceNumberUri, test::kTransportSequenceNumberExtensionId)); } (*receive_configs)[0].rtp.fec.red_payload_type = send_config->rtp.fec.red_payload_type; (*receive_configs)[0].rtp.fec.ulpfec_payload_type = send_config->rtp.fec.ulpfec_payload_type; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out waiting for FEC and media packets."; } std::unique_ptr transport_adapter_; std::unique_ptr encoder_; const std::string payload_name_; const bool use_nack_; const bool expect_red_; const bool expect_fec_; int send_count_; bool received_media_; bool received_fec_; bool header_extensions_enabled_; RTPHeader prev_header_; }; TEST_F(VideoSendStreamTest, SupportsFecWithExtensions) { FecObserver test(true, false, true, true, "VP8"); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFecWithoutExtensions) { FecObserver test(false, false, true, true, "VP8"); RunBaseTest(&test); } // The FEC scheme used is not efficient for H264, so we should not use RED/FEC // since we'll still have to re-request FEC packets, effectively wasting // bandwidth since the receiver has to wait for FEC retransmissions to determine // that the received state is actually decodable. TEST_F(VideoSendStreamTest, DoesNotUtilizeFecForH264WithNackEnabled) { FecObserver test(false, true, true, false, "H264"); RunBaseTest(&test); } // Without retransmissions FEC for H264 is fine. TEST_F(VideoSendStreamTest, DoesUtilizeRedForH264WithoutNackEnabled) { FecObserver test(false, false, true, true, "H264"); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, DoesUtilizeRedForVp8WithNackEnabled) { FecObserver test(false, true, true, true, "VP8"); RunBaseTest(&test); } #if !defined(RTC_DISABLE_VP9) TEST_F(VideoSendStreamTest, DoesUtilizeRedForVp9WithNackEnabled) { FecObserver test(false, true, true, true, "VP9"); RunBaseTest(&test); } #endif // !defined(RTC_DISABLE_VP9) void VideoSendStreamTest::TestNackRetransmission( uint32_t retransmit_ssrc, uint8_t retransmit_payload_type) { class NackObserver : public test::SendTest { public: explicit NackObserver(uint32_t retransmit_ssrc, uint8_t retransmit_payload_type) : SendTest(kDefaultTimeoutMs), send_count_(0), retransmit_ssrc_(retransmit_ssrc), retransmit_payload_type_(retransmit_payload_type), nacked_sequence_number_(-1) { } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); // Nack second packet after receiving the third one. if (++send_count_ == 3) { uint16_t nack_sequence_number = header.sequenceNumber - 1; nacked_sequence_number_ = nack_sequence_number; NullReceiveStatistics null_stats; RTCPSender rtcp_sender(false, Clock::GetRealTimeClock(), &null_stats, nullptr, nullptr, transport_adapter_.get()); rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize); rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]); RTCPSender::FeedbackState feedback_state; EXPECT_EQ(0, rtcp_sender.SendRTCP( feedback_state, kRtcpNack, 1, &nack_sequence_number)); } uint16_t sequence_number = header.sequenceNumber; if (header.ssrc == retransmit_ssrc_ && retransmit_ssrc_ != kVideoSendSsrcs[0]) { // Not kVideoSendSsrcs[0], assume correct RTX packet. Extract sequence // number. const uint8_t* rtx_header = packet + header.headerLength; sequence_number = (rtx_header[0] << 8) + rtx_header[1]; } if (sequence_number == nacked_sequence_number_) { EXPECT_EQ(retransmit_ssrc_, header.ssrc); EXPECT_EQ(retransmit_payload_type_, header.payloadType); observation_complete_.Set(); } return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { transport_adapter_.reset( new internal::TransportAdapter(send_config->send_transport)); transport_adapter_->Enable(); send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs; send_config->rtp.rtx.payload_type = retransmit_payload_type_; if (retransmit_ssrc_ != kVideoSendSsrcs[0]) send_config->rtp.rtx.ssrcs.push_back(retransmit_ssrc_); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for NACK retransmission."; } std::unique_ptr transport_adapter_; int send_count_; uint32_t retransmit_ssrc_; uint8_t retransmit_payload_type_; int nacked_sequence_number_; } test(retransmit_ssrc, retransmit_payload_type); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, RetransmitsNack) { // Normal NACKs should use the send SSRC. TestNackRetransmission(kVideoSendSsrcs[0], kFakeVideoSendPayloadType); } TEST_F(VideoSendStreamTest, RetransmitsNackOverRtx) { // NACKs over RTX should use a separate SSRC. TestNackRetransmission(kSendRtxSsrcs[0], kSendRtxPayloadType); } void VideoSendStreamTest::TestPacketFragmentationSize(VideoFormat format, bool with_fec) { // Use a fake encoder to output a frame of every size in the range [90, 290], // for each size making sure that the exact number of payload bytes received // is correct and that packets are fragmented to respect max packet size. static const size_t kMaxPacketSize = 128; static const size_t start = 90; static const size_t stop = 290; // Observer that verifies that the expected number of packets and bytes // arrive for each frame size, from start_size to stop_size. class FrameFragmentationTest : public test::SendTest, public EncodedFrameObserver { public: FrameFragmentationTest(size_t max_packet_size, size_t start_size, size_t stop_size, bool test_generic_packetization, bool use_fec) : SendTest(kLongTimeoutMs), encoder_(stop), max_packet_size_(max_packet_size), stop_size_(stop_size), test_generic_packetization_(test_generic_packetization), use_fec_(use_fec), packet_count_(0), accumulated_size_(0), accumulated_payload_(0), fec_packet_received_(false), current_size_rtp_(start_size), current_size_frame_(static_cast(start_size)) { // Fragmentation required, this test doesn't make sense without it. encoder_.SetFrameSize(start_size); RTC_DCHECK_GT(stop_size, max_packet_size); } private: Action OnSendRtp(const uint8_t* packet, size_t size) override { size_t length = size; RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); EXPECT_LE(length, max_packet_size_); if (use_fec_) { uint8_t payload_type = packet[header.headerLength]; bool is_fec = header.payloadType == kRedPayloadType && payload_type == kUlpfecPayloadType; if (is_fec) { fec_packet_received_ = true; return SEND_PACKET; } } accumulated_size_ += length; if (use_fec_) TriggerLossReport(header); if (test_generic_packetization_) { size_t overhead = header.headerLength + header.paddingLength; // Only remove payload header and RED header if the packet actually // contains payload. if (length > overhead) { overhead += (1 /* Generic header */); if (use_fec_) overhead += 1; // RED for FEC header. } EXPECT_GE(length, overhead); accumulated_payload_ += length - overhead; } // Marker bit set indicates last packet of a frame. if (header.markerBit) { if (use_fec_ && accumulated_payload_ == current_size_rtp_ - 1) { // With FEC enabled, frame size is incremented asynchronously, so // "old" frames one byte too small may arrive. Accept, but don't // increase expected frame size. accumulated_size_ = 0; accumulated_payload_ = 0; return SEND_PACKET; } EXPECT_GE(accumulated_size_, current_size_rtp_); if (test_generic_packetization_) { EXPECT_EQ(current_size_rtp_, accumulated_payload_); } // Last packet of frame; reset counters. accumulated_size_ = 0; accumulated_payload_ = 0; if (current_size_rtp_ == stop_size_) { // Done! (Don't increase size again, might arrive more @ stop_size). observation_complete_.Set(); } else { // Increase next expected frame size. If testing with FEC, make sure // a FEC packet has been received for this frame size before // proceeding, to make sure that redundancy packets don't exceed // size limit. if (!use_fec_) { ++current_size_rtp_; } else if (fec_packet_received_) { fec_packet_received_ = false; ++current_size_rtp_; ++current_size_frame_; } } } return SEND_PACKET; } void TriggerLossReport(const RTPHeader& header) { // Send lossy receive reports to trigger FEC enabling. if (packet_count_++ % 2 != 0) { // Receive statistics reporting having lost 50% of the packets. FakeReceiveStatistics lossy_receive_stats( kVideoSendSsrcs[0], header.sequenceNumber, packet_count_ / 2, 127); RTCPSender rtcp_sender(false, Clock::GetRealTimeClock(), &lossy_receive_stats, nullptr, nullptr, transport_adapter_.get()); rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize); rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]); RTCPSender::FeedbackState feedback_state; EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr)); } } void EncodedFrameCallback(const EncodedFrame& encoded_frame) override { // Increase frame size for next encoded frame, in the context of the // encoder thread. if (!use_fec_ && current_size_frame_.Value() < static_cast(stop_size_)) { ++current_size_frame_; } encoder_.SetFrameSize(static_cast(current_size_frame_.Value())); } Call::Config GetSenderCallConfig() override { Call::Config config; const int kMinBitrateBps = 30000; config.bitrate_config.min_bitrate_bps = kMinBitrateBps; return config; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { transport_adapter_.reset( new internal::TransportAdapter(send_config->send_transport)); transport_adapter_->Enable(); if (use_fec_) { send_config->rtp.fec.red_payload_type = kRedPayloadType; send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType; } if (!test_generic_packetization_) send_config->encoder_settings.payload_name = "VP8"; send_config->encoder_settings.encoder = &encoder_; send_config->rtp.max_packet_size = kMaxPacketSize; send_config->post_encode_callback = this; // Make sure there is at least one extension header, to make the RTP // header larger than the base length of 12 bytes. EXPECT_FALSE(send_config->rtp.extensions.empty()); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while observing incoming RTP packets."; } std::unique_ptr transport_adapter_; test::ConfigurableFrameSizeEncoder encoder_; const size_t max_packet_size_; const size_t stop_size_; const bool test_generic_packetization_; const bool use_fec_; uint32_t packet_count_; size_t accumulated_size_; size_t accumulated_payload_; bool fec_packet_received_; size_t current_size_rtp_; Atomic32 current_size_frame_; }; // Don't auto increment if FEC is used; continue sending frame size until // a FEC packet has been received. FrameFragmentationTest test( kMaxPacketSize, start, stop, format == kGeneric, with_fec); RunBaseTest(&test); } // TODO(sprang): Is there any way of speeding up these tests? TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSize) { TestPacketFragmentationSize(kGeneric, false); } TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSizeWithFec) { TestPacketFragmentationSize(kGeneric, true); } TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSize) { TestPacketFragmentationSize(kVP8, false); } TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSizeWithFec) { TestPacketFragmentationSize(kVP8, true); } // The test will go through a number of phases. // 1. Start sending packets. // 2. As soon as the RTP stream has been detected, signal a low REMB value to // suspend the stream. // 3. Wait until |kSuspendTimeFrames| have been captured without seeing any RTP // packets. // 4. Signal a high REMB and then wait for the RTP stream to start again. // When the stream is detected again, and the stats show that the stream // is no longer suspended, the test ends. TEST_F(VideoSendStreamTest, SuspendBelowMinBitrate) { static const int kSuspendTimeFrames = 60; // Suspend for 2 seconds @ 30 fps. class RembObserver : public test::SendTest, public rtc::VideoSinkInterface { public: RembObserver() : SendTest(kDefaultTimeoutMs), clock_(Clock::GetRealTimeClock()), test_state_(kBeforeSuspend), rtp_count_(0), last_sequence_number_(0), suspended_frame_count_(0), low_remb_bps_(0), high_remb_bps_(0) { } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { rtc::CritScope lock(&crit_); ++rtp_count_; RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); last_sequence_number_ = header.sequenceNumber; if (test_state_ == kBeforeSuspend) { // The stream has started. Try to suspend it. SendRtcpFeedback(low_remb_bps_); test_state_ = kDuringSuspend; } else if (test_state_ == kDuringSuspend) { if (header.paddingLength == 0) { // Received non-padding packet during suspension period. Reset the // counter. suspended_frame_count_ = 0; } SendRtcpFeedback(0); // REMB is only sent if value is > 0. } else if (test_state_ == kWaitingForPacket) { if (header.paddingLength == 0) { // Non-padding packet observed. Test is almost complete. Will just // have to wait for the stats to change. test_state_ = kWaitingForStats; } SendRtcpFeedback(0); // REMB is only sent if value is > 0. } else if (test_state_ == kWaitingForStats) { VideoSendStream::Stats stats = stream_->GetStats(); if (stats.suspended == false) { // Stats flipped to false. Test is complete. observation_complete_.Set(); } SendRtcpFeedback(0); // REMB is only sent if value is > 0. } return SEND_PACKET; } // This method implements the rtc::VideoSinkInterface void OnFrame(const VideoFrame& video_frame) override { rtc::CritScope lock(&crit_); if (test_state_ == kDuringSuspend && ++suspended_frame_count_ > kSuspendTimeFrames) { VideoSendStream::Stats stats = stream_->GetStats(); EXPECT_TRUE(stats.suspended); SendRtcpFeedback(high_remb_bps_); test_state_ = kWaitingForPacket; } } void set_low_remb_bps(int value) { rtc::CritScope lock(&crit_); low_remb_bps_ = value; } void set_high_remb_bps(int value) { rtc::CritScope lock(&crit_); high_remb_bps_ = value; } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { transport_adapter_.reset( new internal::TransportAdapter(send_config->send_transport)); transport_adapter_->Enable(); send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs; send_config->pre_encode_callback = this; send_config->suspend_below_min_bitrate = true; int min_bitrate_bps = encoder_config->streams[0].min_bitrate_bps; set_low_remb_bps(min_bitrate_bps - 10000); int threshold_window = std::max(min_bitrate_bps / 10, 20000); ASSERT_GT(encoder_config->streams[0].max_bitrate_bps, min_bitrate_bps + threshold_window + 5000); set_high_remb_bps(min_bitrate_bps + threshold_window + 5000); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out during suspend-below-min-bitrate test."; } enum TestState { kBeforeSuspend, kDuringSuspend, kWaitingForPacket, kWaitingForStats }; virtual void SendRtcpFeedback(int remb_value) EXCLUSIVE_LOCKS_REQUIRED(crit_) { FakeReceiveStatistics receive_stats(kVideoSendSsrcs[0], last_sequence_number_, rtp_count_, 0); RTCPSender rtcp_sender(false, clock_, &receive_stats, nullptr, nullptr, transport_adapter_.get()); rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize); rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]); if (remb_value > 0) { rtcp_sender.SetREMBStatus(true); rtcp_sender.SetREMBData(remb_value, std::vector()); } RTCPSender::FeedbackState feedback_state; EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr)); } std::unique_ptr transport_adapter_; Clock* const clock_; VideoSendStream* stream_; rtc::CriticalSection crit_; TestState test_state_ GUARDED_BY(crit_); int rtp_count_ GUARDED_BY(crit_); int last_sequence_number_ GUARDED_BY(crit_); int suspended_frame_count_ GUARDED_BY(crit_); int low_remb_bps_ GUARDED_BY(crit_); int high_remb_bps_ GUARDED_BY(crit_); } test; RunBaseTest(&test); } // This test that padding stops being send after a while if the Camera stops // producing video frames and that padding resumes if the camera restarts. TEST_F(VideoSendStreamTest, NoPaddingWhenVideoIsMuted) { class NoPaddingWhenVideoIsMuted : public test::SendTest { public: NoPaddingWhenVideoIsMuted() : SendTest(kDefaultTimeoutMs), clock_(Clock::GetRealTimeClock()), last_packet_time_ms_(-1), capturer_(nullptr) { } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { rtc::CritScope lock(&crit_); last_packet_time_ms_ = clock_->TimeInMilliseconds(); RTPHeader header; parser_->Parse(packet, length, &header); const bool only_padding = header.headerLength + header.paddingLength == length; if (test_state_ == kBeforeStopCapture) { capturer_->Stop(); test_state_ = kWaitingForPadding; } else if (test_state_ == kWaitingForPadding && only_padding) { test_state_ = kWaitingForNoPackets; } else if (test_state_ == kWaitingForPaddingAfterCameraRestart && only_padding) { observation_complete_.Set(); } return SEND_PACKET; } Action OnSendRtcp(const uint8_t* packet, size_t length) override { rtc::CritScope lock(&crit_); const int kNoPacketsThresholdMs = 2000; if (test_state_ == kWaitingForNoPackets && (last_packet_time_ms_ > 0 && clock_->TimeInMilliseconds() - last_packet_time_ms_ > kNoPacketsThresholdMs)) { capturer_->Start(); test_state_ = kWaitingForPaddingAfterCameraRestart; } return SEND_PACKET; } size_t GetNumVideoStreams() const override { return 3; } void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { rtc::CritScope lock(&crit_); capturer_ = frame_generator_capturer; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for RTP packets to stop being sent."; } enum TestState { kBeforeStopCapture, kWaitingForPadding, kWaitingForNoPackets, kWaitingForPaddingAfterCameraRestart }; TestState test_state_ = kBeforeStopCapture; Clock* const clock_; std::unique_ptr transport_adapter_; rtc::CriticalSection crit_; int64_t last_packet_time_ms_ GUARDED_BY(crit_); test::FrameGeneratorCapturer* capturer_ GUARDED_BY(crit_); } test; RunBaseTest(&test); } // This test first observes "high" bitrate use at which point it sends a REMB to // indicate that it should be lowered significantly. The test then observes that // the bitrate observed is sinking well below the min-transmit-bitrate threshold // to verify that the min-transmit bitrate respects incoming REMB. // // Note that the test starts at "high" bitrate and does not ramp up to "higher" // bitrate since no receiver block or remb is sent in the initial phase. TEST_F(VideoSendStreamTest, MinTransmitBitrateRespectsRemb) { static const int kMinTransmitBitrateBps = 400000; static const int kHighBitrateBps = 150000; static const int kRembBitrateBps = 80000; static const int kRembRespectedBitrateBps = 100000; class BitrateObserver : public test::SendTest { public: BitrateObserver() : SendTest(kDefaultTimeoutMs), bitrate_capped_(false) { } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { if (RtpHeaderParser::IsRtcp(packet, length)) return DROP_PACKET; RTPHeader header; if (!parser_->Parse(packet, length, &header)) return DROP_PACKET; RTC_DCHECK(stream_); VideoSendStream::Stats stats = stream_->GetStats(); if (!stats.substreams.empty()) { EXPECT_EQ(1u, stats.substreams.size()); int total_bitrate_bps = stats.substreams.begin()->second.total_bitrate_bps; test::PrintResult("bitrate_stats_", "min_transmit_bitrate_low_remb", "bitrate_bps", static_cast(total_bitrate_bps), "bps", false); if (total_bitrate_bps > kHighBitrateBps) { rtp_rtcp_->SetREMBData(kRembBitrateBps, std::vector(1, header.ssrc)); rtp_rtcp_->Process(); bitrate_capped_ = true; } else if (bitrate_capped_ && total_bitrate_bps < kRembRespectedBitrateBps) { observation_complete_.Set(); } } // Packets don't have to be delivered since the test is the receiver. return DROP_PACKET; } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; RtpRtcp::Configuration config; config.outgoing_transport = feedback_transport_.get(); rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(config)); rtp_rtcp_->SetREMBStatus(true); rtp_rtcp_->SetRTCPStatus(RtcpMode::kReducedSize); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { feedback_transport_.reset( new internal::TransportAdapter(send_config->send_transport)); feedback_transport_->Enable(); encoder_config->min_transmit_bitrate_bps = kMinTransmitBitrateBps; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timeout while waiting for low bitrate stats after REMB."; } std::unique_ptr rtp_rtcp_; std::unique_ptr feedback_transport_; VideoSendStream* stream_; bool bitrate_capped_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, CanReconfigureToUseStartBitrateAbovePreviousMax) { class StartBitrateObserver : public test::FakeEncoder { public: StartBitrateObserver() : FakeEncoder(Clock::GetRealTimeClock()), start_bitrate_changed_(false, false), start_bitrate_kbps_(0) {} int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { rtc::CritScope lock(&crit_); start_bitrate_kbps_ = config->startBitrate; start_bitrate_changed_.Set(); return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size); } int32_t SetRates(uint32_t new_target_bitrate, uint32_t framerate) override { rtc::CritScope lock(&crit_); start_bitrate_kbps_ = new_target_bitrate; start_bitrate_changed_.Set(); return FakeEncoder::SetRates(new_target_bitrate, framerate); } int GetStartBitrateKbps() const { rtc::CritScope lock(&crit_); return start_bitrate_kbps_; } bool WaitForStartBitrate() { return start_bitrate_changed_.Wait( VideoSendStreamTest::kDefaultTimeoutMs); } private: rtc::CriticalSection crit_; rtc::Event start_bitrate_changed_; int start_bitrate_kbps_ GUARDED_BY(crit_); }; CreateSenderCall(Call::Config()); test::NullTransport transport; CreateSendConfig(1, 0, &transport); Call::Config::BitrateConfig bitrate_config; bitrate_config.start_bitrate_bps = 2 * video_encoder_config_.streams[0].max_bitrate_bps; sender_call_->SetBitrateConfig(bitrate_config); StartBitrateObserver encoder; video_send_config_.encoder_settings.encoder = &encoder; CreateVideoStreams(); EXPECT_TRUE(encoder.WaitForStartBitrate()); EXPECT_EQ(video_encoder_config_.streams[0].max_bitrate_bps / 1000, encoder.GetStartBitrateKbps()); video_encoder_config_.streams[0].max_bitrate_bps = 2 * bitrate_config.start_bitrate_bps; video_send_stream_->ReconfigureVideoEncoder(video_encoder_config_); // New bitrate should be reconfigured above the previous max. As there's no // network connection this shouldn't be flaky, as no bitrate should've been // reported in between. EXPECT_TRUE(encoder.WaitForStartBitrate()); EXPECT_EQ(bitrate_config.start_bitrate_bps / 1000, encoder.GetStartBitrateKbps()); DestroyStreams(); } // This test that if the encoder use an internal source, VideoEncoder::SetRates // will be called with zero bitrate during initialization and that // VideoSendStream::Stop also triggers VideoEncoder::SetRates Start to be called // with zero bitrate. TEST_F(VideoSendStreamTest, VideoSendStreamStopSetEncoderRateToZero) { class StartStopBitrateObserver : public test::FakeEncoder { public: StartStopBitrateObserver() : FakeEncoder(Clock::GetRealTimeClock()), encoder_init_(false, false), bitrate_changed_(false, false), bitrate_kbps_(0) {} int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { rtc::CritScope lock(&crit_); bitrate_kbps_ = config->startBitrate; encoder_init_.Set(); return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size); } int32_t SetRates(uint32_t new_target_bitrate, uint32_t framerate) override { rtc::CritScope lock(&crit_); bitrate_kbps_ = new_target_bitrate; bitrate_changed_.Set(); return FakeEncoder::SetRates(new_target_bitrate, framerate); } int GetBitrateKbps() const { rtc::CritScope lock(&crit_); return bitrate_kbps_; } bool WaitForEncoderInit() { return encoder_init_.Wait(VideoSendStreamTest::kDefaultTimeoutMs); } bool WaitBitrateChanged() { return bitrate_changed_.Wait(VideoSendStreamTest::kDefaultTimeoutMs); } private: rtc::CriticalSection crit_; rtc::Event encoder_init_; rtc::Event bitrate_changed_; int bitrate_kbps_ GUARDED_BY(crit_); }; CreateSenderCall(Call::Config()); test::NullTransport transport; CreateSendConfig(1, 0, &transport); StartStopBitrateObserver encoder; video_send_config_.encoder_settings.encoder = &encoder; video_send_config_.encoder_settings.internal_source = true; CreateVideoStreams(); EXPECT_TRUE(encoder.WaitForEncoderInit()); EXPECT_GT(encoder.GetBitrateKbps(), 0); video_send_stream_->Start(); EXPECT_TRUE(encoder.WaitBitrateChanged()); EXPECT_GT(encoder.GetBitrateKbps(), 0); video_send_stream_->Stop(); EXPECT_TRUE(encoder.WaitBitrateChanged()); EXPECT_EQ(0, encoder.GetBitrateKbps()); video_send_stream_->Start(); EXPECT_TRUE(encoder.WaitBitrateChanged()); EXPECT_GT(encoder.GetBitrateKbps(), 0); DestroyStreams(); } TEST_F(VideoSendStreamTest, CapturesTextureAndVideoFrames) { class FrameObserver : public rtc::VideoSinkInterface { public: FrameObserver() : output_frame_event_(false, false) {} void OnFrame(const VideoFrame& video_frame) override { output_frames_.push_back(video_frame); output_frame_event_.Set(); } void WaitOutputFrame() { const int kWaitFrameTimeoutMs = 3000; EXPECT_TRUE(output_frame_event_.Wait(kWaitFrameTimeoutMs)) << "Timeout while waiting for output frames."; } const std::vector& output_frames() const { return output_frames_; } private: // Delivered output frames. std::vector output_frames_; // Indicate an output frame has arrived. rtc::Event output_frame_event_; }; // Initialize send stream. CreateSenderCall(Call::Config()); test::NullTransport transport; CreateSendConfig(1, 0, &transport); FrameObserver observer; video_send_config_.pre_encode_callback = &observer; CreateVideoStreams(); // Prepare five input frames. Send ordinary VideoFrame and texture frames // alternatively. std::vector input_frames; int width = static_cast(video_encoder_config_.streams[0].width); int height = static_cast(video_encoder_config_.streams[0].height); test::FakeNativeHandle* handle1 = new test::FakeNativeHandle(); test::FakeNativeHandle* handle2 = new test::FakeNativeHandle(); test::FakeNativeHandle* handle3 = new test::FakeNativeHandle(); input_frames.push_back(test::FakeNativeHandle::CreateFrame( handle1, width, height, 1, 1, kVideoRotation_0)); input_frames.push_back(test::FakeNativeHandle::CreateFrame( handle2, width, height, 2, 2, kVideoRotation_0)); input_frames.push_back(CreateVideoFrame(width, height, 3)); input_frames.push_back(CreateVideoFrame(width, height, 4)); input_frames.push_back(test::FakeNativeHandle::CreateFrame( handle3, width, height, 5, 5, kVideoRotation_0)); video_send_stream_->Start(); for (size_t i = 0; i < input_frames.size(); i++) { video_send_stream_->Input()->IncomingCapturedFrame(input_frames[i]); // Do not send the next frame too fast, so the frame dropper won't drop it. if (i < input_frames.size() - 1) SleepMs(1000 / video_encoder_config_.streams[0].max_framerate); // Wait until the output frame is received before sending the next input // frame. Or the previous input frame may be replaced without delivering. observer.WaitOutputFrame(); } video_send_stream_->Stop(); // Test if the input and output frames are the same. render_time_ms and // timestamp are not compared because capturer sets those values. ExpectEqualFramesVector(input_frames, observer.output_frames()); DestroyStreams(); } void ExpectEqualFramesVector(const std::vector& frames1, const std::vector& frames2) { EXPECT_EQ(frames1.size(), frames2.size()); for (size_t i = 0; i < std::min(frames1.size(), frames2.size()); ++i) // Compare frame buffers, since we don't care about differing timestamps. EXPECT_TRUE(test::FrameBufsEqual(frames1[i].video_frame_buffer(), frames2[i].video_frame_buffer())); } VideoFrame CreateVideoFrame(int width, int height, uint8_t data) { const int kSizeY = width * height * 2; std::unique_ptr buffer(new uint8_t[kSizeY]); memset(buffer.get(), data, kSizeY); VideoFrame frame; frame.CreateFrame(buffer.get(), buffer.get(), buffer.get(), width, height, width, width / 2, width / 2, kVideoRotation_0); frame.set_timestamp(data); frame.set_render_time_ms(data); return frame; } TEST_F(VideoSendStreamTest, EncoderIsProperlyInitializedAndDestroyed) { class EncoderStateObserver : public test::SendTest, public VideoEncoder { public: EncoderStateObserver() : SendTest(kDefaultTimeoutMs), initialized_(false), callback_registered_(false), num_releases_(0), released_(false) {} bool IsReleased() { rtc::CritScope lock(&crit_); return released_; } bool IsReadyForEncode() { rtc::CritScope lock(&crit_); return initialized_ && callback_registered_; } size_t num_releases() { rtc::CritScope lock(&crit_); return num_releases_; } private: int32_t InitEncode(const VideoCodec* codecSettings, int32_t numberOfCores, size_t maxPayloadSize) override { rtc::CritScope lock(&crit_); EXPECT_FALSE(initialized_); initialized_ = true; released_ = false; return 0; } int32_t Encode(const VideoFrame& inputImage, const CodecSpecificInfo* codecSpecificInfo, const std::vector* frame_types) override { EXPECT_TRUE(IsReadyForEncode()); observation_complete_.Set(); return 0; } int32_t RegisterEncodeCompleteCallback( EncodedImageCallback* callback) override { rtc::CritScope lock(&crit_); EXPECT_TRUE(initialized_); callback_registered_ = true; return 0; } int32_t Release() override { rtc::CritScope lock(&crit_); EXPECT_TRUE(IsReadyForEncode()); EXPECT_FALSE(released_); initialized_ = false; callback_registered_ = false; released_ = true; ++num_releases_; return 0; } int32_t SetChannelParameters(uint32_t packetLoss, int64_t rtt) override { EXPECT_TRUE(IsReadyForEncode()); return 0; } int32_t SetRates(uint32_t newBitRate, uint32_t frameRate) override { EXPECT_TRUE(IsReadyForEncode()); return 0; } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = this; encoder_config_ = *encoder_config; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for Encode."; EXPECT_EQ(0u, num_releases()); stream_->ReconfigureVideoEncoder(encoder_config_); EXPECT_EQ(0u, num_releases()); stream_->Stop(); // Encoder should not be released before destroying the VideoSendStream. EXPECT_FALSE(IsReleased()); EXPECT_TRUE(IsReadyForEncode()); stream_->Start(); // Sanity check, make sure we still encode frames with this encoder. EXPECT_TRUE(Wait()) << "Timed out while waiting for Encode."; } rtc::CriticalSection crit_; VideoSendStream* stream_; bool initialized_ GUARDED_BY(crit_); bool callback_registered_ GUARDED_BY(crit_); size_t num_releases_ GUARDED_BY(crit_); bool released_ GUARDED_BY(crit_); VideoEncoderConfig encoder_config_; } test_encoder; RunBaseTest(&test_encoder); EXPECT_TRUE(test_encoder.IsReleased()); EXPECT_EQ(1u, test_encoder.num_releases()); } TEST_F(VideoSendStreamTest, EncoderSetupPropagatesCommonEncoderConfigValues) { class VideoCodecConfigObserver : public test::SendTest, public test::FakeEncoder { public: VideoCodecConfigObserver() : SendTest(kDefaultTimeoutMs), FakeEncoder(Clock::GetRealTimeClock()), init_encode_event_(false, false), num_initializations_(0) {} private: void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = this; encoder_config_ = *encoder_config; } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; } int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { if (num_initializations_ == 0) { // Verify default values. EXPECT_EQ(kRealtimeVideo, config->mode); } else { // Verify that changed values are propagated. EXPECT_EQ(kScreensharing, config->mode); } ++num_initializations_; init_encode_event_.Set(); return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size); } void PerformTest() override { EXPECT_TRUE(init_encode_event_.Wait(kDefaultTimeoutMs)); EXPECT_EQ(1u, num_initializations_) << "VideoEncoder not initialized."; encoder_config_.content_type = VideoEncoderConfig::ContentType::kScreen; stream_->ReconfigureVideoEncoder(encoder_config_); EXPECT_TRUE(init_encode_event_.Wait(kDefaultTimeoutMs)); EXPECT_EQ(2u, num_initializations_) << "ReconfigureVideoEncoder did not reinitialize the encoder with " "new encoder settings."; } rtc::Event init_encode_event_; size_t num_initializations_; VideoSendStream* stream_; VideoEncoderConfig encoder_config_; } test; RunBaseTest(&test); } static const size_t kVideoCodecConfigObserverNumberOfTemporalLayers = 4; template class VideoCodecConfigObserver : public test::SendTest, public test::FakeEncoder { public: VideoCodecConfigObserver(VideoCodecType video_codec_type, const char* codec_name) : SendTest(VideoSendStreamTest::kDefaultTimeoutMs), FakeEncoder(Clock::GetRealTimeClock()), video_codec_type_(video_codec_type), codec_name_(codec_name), init_encode_event_(false, false), num_initializations_(0) { memset(&encoder_settings_, 0, sizeof(encoder_settings_)); } private: void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = this; send_config->encoder_settings.payload_name = codec_name_; for (size_t i = 0; i < encoder_config->streams.size(); ++i) { encoder_config->streams[i].temporal_layer_thresholds_bps.resize( kVideoCodecConfigObserverNumberOfTemporalLayers - 1); } encoder_config->encoder_specific_settings = &encoder_settings_; encoder_config_ = *encoder_config; } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; } int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { EXPECT_EQ(video_codec_type_, config->codecType); VerifyCodecSpecifics(*config); ++num_initializations_; init_encode_event_.Set(); return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size); } void VerifyCodecSpecifics(const VideoCodec& config) const; void PerformTest() override { EXPECT_TRUE( init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs)); ASSERT_EQ(1u, num_initializations_) << "VideoEncoder not initialized."; encoder_settings_.frameDroppingOn = true; stream_->ReconfigureVideoEncoder(encoder_config_); ASSERT_TRUE( init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs)); EXPECT_EQ(2u, num_initializations_) << "ReconfigureVideoEncoder did not reinitialize the encoder with " "new encoder settings."; } int32_t Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) override { // Silently skip the encode, FakeEncoder::Encode doesn't produce VP8. return 0; } T encoder_settings_; const VideoCodecType video_codec_type_; const char* const codec_name_; rtc::Event init_encode_event_; size_t num_initializations_; VideoSendStream* stream_; VideoEncoderConfig encoder_config_; }; template <> void VideoCodecConfigObserver::VerifyCodecSpecifics( const VideoCodec& config) const { EXPECT_EQ(0, memcmp(&config.codecSpecific.H264, &encoder_settings_, sizeof(encoder_settings_))); } template <> void VideoCodecConfigObserver::VerifyCodecSpecifics( const VideoCodec& config) const { // Check that the number of temporal layers has propagated properly to // VideoCodec. EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.codecSpecific.VP8.numberOfTemporalLayers); for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) { EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.simulcastStream[i].numberOfTemporalLayers); } // Set expected temporal layers as they should have been set when // reconfiguring the encoder and not match the set config. VideoCodecVP8 encoder_settings = encoder_settings_; encoder_settings.numberOfTemporalLayers = kVideoCodecConfigObserverNumberOfTemporalLayers; EXPECT_EQ(0, memcmp(&config.codecSpecific.VP8, &encoder_settings, sizeof(encoder_settings_))); } template <> void VideoCodecConfigObserver::VerifyCodecSpecifics( const VideoCodec& config) const { // Check that the number of temporal layers has propagated properly to // VideoCodec. EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.codecSpecific.VP9.numberOfTemporalLayers); for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) { EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.simulcastStream[i].numberOfTemporalLayers); } // Set expected temporal layers as they should have been set when // reconfiguring the encoder and not match the set config. VideoCodecVP9 encoder_settings = encoder_settings_; encoder_settings.numberOfTemporalLayers = kVideoCodecConfigObserverNumberOfTemporalLayers; EXPECT_EQ(0, memcmp(&config.codecSpecific.VP9, &encoder_settings, sizeof(encoder_settings_))); } TEST_F(VideoSendStreamTest, EncoderSetupPropagatesVp8Config) { VideoCodecConfigObserver test(kVideoCodecVP8, "VP8"); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, EncoderSetupPropagatesVp9Config) { VideoCodecConfigObserver test(kVideoCodecVP9, "VP9"); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, EncoderSetupPropagatesH264Config) { VideoCodecConfigObserver test(kVideoCodecH264, "H264"); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, RtcpSenderReportContainsMediaBytesSent) { class RtcpSenderReportTest : public test::SendTest { public: RtcpSenderReportTest() : SendTest(kDefaultTimeoutMs), rtp_packets_sent_(0), media_bytes_sent_(0) {} private: Action OnSendRtp(const uint8_t* packet, size_t length) override { rtc::CritScope lock(&crit_); RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); ++rtp_packets_sent_; media_bytes_sent_ += length - header.headerLength - header.paddingLength; return SEND_PACKET; } Action OnSendRtcp(const uint8_t* packet, size_t length) override { rtc::CritScope lock(&crit_); RTCPUtility::RTCPParserV2 parser(packet, length, true); EXPECT_TRUE(parser.IsValid()); RTCPUtility::RTCPPacketTypes packet_type = parser.Begin(); while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) { if (packet_type == RTCPUtility::RTCPPacketTypes::kSr) { // Only compare sent media bytes if SenderPacketCount matches the // number of sent rtp packets (a new rtp packet could be sent before // the rtcp packet). if (parser.Packet().SR.SenderOctetCount > 0 && parser.Packet().SR.SenderPacketCount == rtp_packets_sent_) { EXPECT_EQ(media_bytes_sent_, parser.Packet().SR.SenderOctetCount); observation_complete_.Set(); } } packet_type = parser.Iterate(); } return SEND_PACKET; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for RTCP sender report."; } rtc::CriticalSection crit_; size_t rtp_packets_sent_ GUARDED_BY(&crit_); size_t media_bytes_sent_ GUARDED_BY(&crit_); } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, TranslatesTwoLayerScreencastToTargetBitrate) { static const int kScreencastTargetBitrateKbps = 200; class ScreencastTargetBitrateTest : public test::SendTest, public test::FakeEncoder { public: ScreencastTargetBitrateTest() : SendTest(kDefaultTimeoutMs), test::FakeEncoder(Clock::GetRealTimeClock()) {} private: int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { EXPECT_EQ(static_cast(kScreencastTargetBitrateKbps), config->targetBitrate); observation_complete_.Set(); return test::FakeEncoder::InitEncode( config, number_of_cores, max_payload_size); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = this; EXPECT_EQ(1u, encoder_config->streams.size()); EXPECT_TRUE( encoder_config->streams[0].temporal_layer_thresholds_bps.empty()); encoder_config->streams[0].temporal_layer_thresholds_bps.push_back( kScreencastTargetBitrateKbps * 1000); encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for the encoder to be initialized."; } } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, ReconfigureBitratesSetsEncoderBitratesCorrectly) { // These are chosen to be "kind of odd" to not be accidentally checked against // default values. static const int kMinBitrateKbps = 137; static const int kStartBitrateKbps = 345; static const int kLowerMaxBitrateKbps = 312; static const int kMaxBitrateKbps = 413; static const int kIncreasedStartBitrateKbps = 451; static const int kIncreasedMaxBitrateKbps = 597; class EncoderBitrateThresholdObserver : public test::SendTest, public test::FakeEncoder { public: EncoderBitrateThresholdObserver() : SendTest(kDefaultTimeoutMs), FakeEncoder(Clock::GetRealTimeClock()), init_encode_event_(false, false), num_initializations_(0) {} private: int32_t InitEncode(const VideoCodec* codecSettings, int32_t numberOfCores, size_t maxPayloadSize) override { if (num_initializations_ == 0) { EXPECT_EQ(static_cast(kMinBitrateKbps), codecSettings->minBitrate); EXPECT_EQ(static_cast(kStartBitrateKbps), codecSettings->startBitrate); EXPECT_EQ(static_cast(kMaxBitrateKbps), codecSettings->maxBitrate); observation_complete_.Set(); } else if (num_initializations_ == 1) { EXPECT_EQ(static_cast(kLowerMaxBitrateKbps), codecSettings->maxBitrate); // The start bitrate should be kept (-1) and capped to the max bitrate. // Since this is not an end-to-end call no receiver should have been // returning a REMB that could lower this estimate. EXPECT_EQ(codecSettings->startBitrate, codecSettings->maxBitrate); } else if (num_initializations_ == 2) { EXPECT_EQ(static_cast(kIncreasedMaxBitrateKbps), codecSettings->maxBitrate); EXPECT_EQ(static_cast(kIncreasedStartBitrateKbps), codecSettings->startBitrate); } ++num_initializations_; init_encode_event_.Set(); return FakeEncoder::InitEncode(codecSettings, numberOfCores, maxPayloadSize); } Call::Config GetSenderCallConfig() override { Call::Config config; config.bitrate_config.min_bitrate_bps = kMinBitrateKbps * 1000; config.bitrate_config.start_bitrate_bps = kStartBitrateKbps * 1000; config.bitrate_config.max_bitrate_bps = kMaxBitrateKbps * 1000; return config; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = this; // Set bitrates lower/higher than min/max to make sure they are properly // capped. encoder_config->streams.front().min_bitrate_bps = kMinBitrateKbps * 1000; encoder_config->streams.front().max_bitrate_bps = kMaxBitrateKbps * 1000; encoder_config_ = *encoder_config; } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { call_ = sender_call; } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } void PerformTest() override { ASSERT_TRUE( init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs)) << "Timed out while waiting encoder to be configured."; Call::Config::BitrateConfig bitrate_config; bitrate_config.start_bitrate_bps = kIncreasedStartBitrateKbps * 1000; bitrate_config.max_bitrate_bps = kIncreasedMaxBitrateKbps * 1000; call_->SetBitrateConfig(bitrate_config); EXPECT_TRUE(Wait()) << "Timed out while waiting encoder to be configured."; encoder_config_.streams[0].min_bitrate_bps = 0; encoder_config_.streams[0].max_bitrate_bps = kLowerMaxBitrateKbps * 1000; send_stream_->ReconfigureVideoEncoder(encoder_config_); ASSERT_TRUE( init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs)); EXPECT_EQ(2, num_initializations_) << "Encoder should have been reconfigured with the new value."; encoder_config_.streams[0].target_bitrate_bps = encoder_config_.streams[0].min_bitrate_bps; encoder_config_.streams[0].max_bitrate_bps = kIncreasedMaxBitrateKbps * 1000; send_stream_->ReconfigureVideoEncoder(encoder_config_); ASSERT_TRUE( init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs)); EXPECT_EQ(3, num_initializations_) << "Encoder should have been reconfigured with the new value."; } rtc::Event init_encode_event_; int num_initializations_; webrtc::Call* call_; webrtc::VideoSendStream* send_stream_; webrtc::VideoEncoderConfig encoder_config_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, ReportsSentResolution) { static const size_t kNumStreams = 3; // Unusual resolutions to make sure that they are the ones being reported. static const struct { int width; int height; } kEncodedResolution[kNumStreams] = { {241, 181}, {300, 121}, {121, 221}}; class ScreencastTargetBitrateTest : public test::SendTest, public test::FakeEncoder { public: ScreencastTargetBitrateTest() : SendTest(kDefaultTimeoutMs), test::FakeEncoder(Clock::GetRealTimeClock()) {} private: int32_t Encode(const VideoFrame& input_image, const CodecSpecificInfo* codecSpecificInfo, const std::vector* frame_types) override { CodecSpecificInfo specifics; specifics.codecType = kVideoCodecGeneric; uint8_t buffer[16] = {0}; EncodedImage encoded(buffer, sizeof(buffer), sizeof(buffer)); encoded._timeStamp = input_image.timestamp(); encoded.capture_time_ms_ = input_image.render_time_ms(); for (size_t i = 0; i < kNumStreams; ++i) { specifics.codecSpecific.generic.simulcast_idx = static_cast(i); encoded._frameType = (*frame_types)[i]; encoded._encodedWidth = kEncodedResolution[i].width; encoded._encodedHeight = kEncodedResolution[i].height; RTC_DCHECK(callback_); if (callback_->Encoded(encoded, &specifics, nullptr) != 0) return -1; } observation_complete_.Set(); return 0; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder = this; EXPECT_EQ(kNumStreams, encoder_config->streams.size()); } size_t GetNumVideoStreams() const override { return kNumStreams; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for the encoder to send one frame."; VideoSendStream::Stats stats = send_stream_->GetStats(); for (size_t i = 0; i < kNumStreams; ++i) { ASSERT_TRUE(stats.substreams.find(kVideoSendSsrcs[i]) != stats.substreams.end()) << "No stats for SSRC: " << kVideoSendSsrcs[i] << ", stats should exist as soon as frames have been encoded."; VideoSendStream::StreamStats ssrc_stats = stats.substreams[kVideoSendSsrcs[i]]; EXPECT_EQ(kEncodedResolution[i].width, ssrc_stats.width); EXPECT_EQ(kEncodedResolution[i].height, ssrc_stats.height); } } void OnVideoStreamsCreated( VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } VideoSendStream* send_stream_; } test; RunBaseTest(&test); } #if !defined(RTC_DISABLE_VP9) class Vp9HeaderObserver : public test::SendTest { public: Vp9HeaderObserver() : SendTest(VideoSendStreamTest::kLongTimeoutMs), vp9_encoder_(VP9Encoder::Create()), vp9_settings_(VideoEncoder::GetDefaultVp9Settings()), packets_sent_(0), frames_sent_(0) {} virtual void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) {} virtual void InspectHeader(const RTPVideoHeaderVP9& vp9) = 0; private: const int kVp9PayloadType = 105; void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { encoder_config->encoder_specific_settings = &vp9_settings_; send_config->encoder_settings.encoder = vp9_encoder_.get(); send_config->encoder_settings.payload_name = "VP9"; send_config->encoder_settings.payload_type = kVp9PayloadType; ModifyVideoConfigsHook(send_config, receive_configs, encoder_config); EXPECT_EQ(1u, encoder_config->streams.size()); encoder_config->streams[0].temporal_layer_thresholds_bps.resize( vp9_settings_.numberOfTemporalLayers - 1); encoder_config_ = *encoder_config; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Test timed out waiting for VP9 packet, num frames " << frames_sent_; } Action OnSendRtp(const uint8_t* packet, size_t length) override { RTPHeader header; EXPECT_TRUE(parser_->Parse(packet, length, &header)); EXPECT_EQ(kVp9PayloadType, header.payloadType); const uint8_t* payload = packet + header.headerLength; size_t payload_length = length - header.headerLength - header.paddingLength; bool new_packet = packets_sent_ == 0 || IsNewerSequenceNumber(header.sequenceNumber, last_header_.sequenceNumber); if (payload_length > 0 && new_packet) { RtpDepacketizer::ParsedPayload parsed; RtpDepacketizerVp9 depacketizer; EXPECT_TRUE(depacketizer.Parse(&parsed, payload, payload_length)); EXPECT_EQ(RtpVideoCodecTypes::kRtpVideoVp9, parsed.type.Video.codec); // Verify common fields for all configurations. VerifyCommonHeader(parsed.type.Video.codecHeader.VP9); CompareConsecutiveFrames(header, parsed.type.Video); // Verify configuration specific settings. InspectHeader(parsed.type.Video.codecHeader.VP9); ++packets_sent_; if (header.markerBit) { ++frames_sent_; } last_header_ = header; last_vp9_ = parsed.type.Video.codecHeader.VP9; } return SEND_PACKET; } protected: bool ContinuousPictureId(const RTPVideoHeaderVP9& vp9) const { if (last_vp9_.picture_id > vp9.picture_id) { return vp9.picture_id == 0; // Wrap. } else { return vp9.picture_id == last_vp9_.picture_id + 1; } } void VerifySpatialIdxWithinFrame(const RTPVideoHeaderVP9& vp9) const { bool new_layer = vp9.spatial_idx != last_vp9_.spatial_idx; EXPECT_EQ(new_layer, vp9.beginning_of_frame); EXPECT_EQ(new_layer, last_vp9_.end_of_frame); EXPECT_EQ(new_layer ? last_vp9_.spatial_idx + 1 : last_vp9_.spatial_idx, vp9.spatial_idx); } void VerifyFixedTemporalLayerStructure(const RTPVideoHeaderVP9& vp9, uint8_t num_layers) const { switch (num_layers) { case 0: VerifyTemporalLayerStructure0(vp9); break; case 1: VerifyTemporalLayerStructure1(vp9); break; case 2: VerifyTemporalLayerStructure2(vp9); break; case 3: VerifyTemporalLayerStructure3(vp9); break; default: RTC_NOTREACHED(); } } void VerifyTemporalLayerStructure0(const RTPVideoHeaderVP9& vp9) const { EXPECT_EQ(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_EQ(kNoTemporalIdx, vp9.temporal_idx); // no tid EXPECT_FALSE(vp9.temporal_up_switch); } void VerifyTemporalLayerStructure1(const RTPVideoHeaderVP9& vp9) const { EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_EQ(0, vp9.temporal_idx); // 0,0,0,... EXPECT_FALSE(vp9.temporal_up_switch); } void VerifyTemporalLayerStructure2(const RTPVideoHeaderVP9& vp9) const { EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_GE(vp9.temporal_idx, 0); // 0,1,0,1,... (tid reset on I-frames). EXPECT_LE(vp9.temporal_idx, 1); EXPECT_EQ(vp9.temporal_idx > 0, vp9.temporal_up_switch); if (IsNewPictureId(vp9)) { uint8_t expected_tid = (!vp9.inter_pic_predicted || last_vp9_.temporal_idx == 1) ? 0 : 1; EXPECT_EQ(expected_tid, vp9.temporal_idx); } } void VerifyTemporalLayerStructure3(const RTPVideoHeaderVP9& vp9) const { EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_GE(vp9.temporal_idx, 0); // 0,2,1,2,... (tid reset on I-frames). EXPECT_LE(vp9.temporal_idx, 2); if (IsNewPictureId(vp9) && vp9.inter_pic_predicted) { EXPECT_NE(vp9.temporal_idx, last_vp9_.temporal_idx); switch (vp9.temporal_idx) { case 0: EXPECT_EQ(2, last_vp9_.temporal_idx); EXPECT_FALSE(vp9.temporal_up_switch); break; case 1: EXPECT_EQ(2, last_vp9_.temporal_idx); EXPECT_TRUE(vp9.temporal_up_switch); break; case 2: EXPECT_EQ(last_vp9_.temporal_idx == 0, vp9.temporal_up_switch); break; } } } void VerifyTl0Idx(const RTPVideoHeaderVP9& vp9) const { if (vp9.tl0_pic_idx == kNoTl0PicIdx) return; uint8_t expected_tl0_idx = last_vp9_.tl0_pic_idx; if (vp9.temporal_idx == 0) ++expected_tl0_idx; EXPECT_EQ(expected_tl0_idx, vp9.tl0_pic_idx); } bool IsNewPictureId(const RTPVideoHeaderVP9& vp9) const { return frames_sent_ > 0 && (vp9.picture_id != last_vp9_.picture_id); } // Flexible mode (F=1): Non-flexible mode (F=0): // // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // |I|P|L|F|B|E|V|-| |I|P|L|F|B|E|V|-| // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | I: |M| PICTURE ID | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // M: | EXTENDED PID | M: | EXTENDED PID | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // L: | T |U| S |D| L: | T |U| S |D| // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // P,F: | P_DIFF |X|N| | TL0PICIDX | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // X: |EXTENDED P_DIFF| V: | SS .. | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // V: | SS .. | // +-+-+-+-+-+-+-+-+ void VerifyCommonHeader(const RTPVideoHeaderVP9& vp9) const { EXPECT_EQ(kMaxTwoBytePictureId, vp9.max_picture_id); // M:1 EXPECT_NE(kNoPictureId, vp9.picture_id); // I:1 EXPECT_EQ(vp9_settings_.flexibleMode, vp9.flexible_mode); // F EXPECT_GE(vp9.spatial_idx, 0); // S EXPECT_LT(vp9.spatial_idx, vp9_settings_.numberOfSpatialLayers); if (vp9.ss_data_available) // V VerifySsData(vp9); if (frames_sent_ == 0) EXPECT_FALSE(vp9.inter_pic_predicted); // P if (!vp9.inter_pic_predicted) { EXPECT_TRUE(vp9.temporal_idx == 0 || vp9.temporal_idx == kNoTemporalIdx); EXPECT_FALSE(vp9.temporal_up_switch); } } // Scalability structure (SS). // // +-+-+-+-+-+-+-+-+ // V: | N_S |Y|G|-|-|-| // +-+-+-+-+-+-+-+-+ // Y: | WIDTH | N_S + 1 times // +-+-+-+-+-+-+-+-+ // | HEIGHT | // +-+-+-+-+-+-+-+-+ // G: | N_G | // +-+-+-+-+-+-+-+-+ // N_G: | T |U| R |-|-| N_G times // +-+-+-+-+-+-+-+-+ // | P_DIFF | R times // +-+-+-+-+-+-+-+-+ void VerifySsData(const RTPVideoHeaderVP9& vp9) const { EXPECT_TRUE(vp9.ss_data_available); // V EXPECT_EQ(vp9_settings_.numberOfSpatialLayers, // N_S + 1 vp9.num_spatial_layers); EXPECT_TRUE(vp9.spatial_layer_resolution_present); // Y:1 size_t expected_width = encoder_config_.streams[0].width; size_t expected_height = encoder_config_.streams[0].height; for (int i = static_cast(vp9.num_spatial_layers) - 1; i >= 0; --i) { EXPECT_EQ(expected_width, vp9.width[i]); // WIDTH EXPECT_EQ(expected_height, vp9.height[i]); // HEIGHT expected_width /= 2; expected_height /= 2; } } void CompareConsecutiveFrames(const RTPHeader& header, const RTPVideoHeader& video) const { const RTPVideoHeaderVP9& vp9 = video.codecHeader.VP9; bool new_frame = packets_sent_ == 0 || IsNewerTimestamp(header.timestamp, last_header_.timestamp); EXPECT_EQ(new_frame, video.isFirstPacket); if (!new_frame) { EXPECT_FALSE(last_header_.markerBit); EXPECT_EQ(last_header_.timestamp, header.timestamp); EXPECT_EQ(last_vp9_.picture_id, vp9.picture_id); EXPECT_EQ(last_vp9_.temporal_idx, vp9.temporal_idx); EXPECT_EQ(last_vp9_.tl0_pic_idx, vp9.tl0_pic_idx); VerifySpatialIdxWithinFrame(vp9); return; } // New frame. EXPECT_TRUE(vp9.beginning_of_frame); // Compare with last packet in previous frame. if (frames_sent_ == 0) return; EXPECT_TRUE(last_vp9_.end_of_frame); EXPECT_TRUE(last_header_.markerBit); EXPECT_TRUE(ContinuousPictureId(vp9)); VerifyTl0Idx(vp9); } std::unique_ptr vp9_encoder_; VideoCodecVP9 vp9_settings_; webrtc::VideoEncoderConfig encoder_config_; RTPHeader last_header_; RTPVideoHeaderVP9 last_vp9_; size_t packets_sent_; size_t frames_sent_; }; TEST_F(VideoSendStreamTest, Vp9NonFlexMode_1Tl1SLayers) { const uint8_t kNumTemporalLayers = 1; const uint8_t kNumSpatialLayers = 1; TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers); } TEST_F(VideoSendStreamTest, Vp9NonFlexMode_2Tl1SLayers) { const uint8_t kNumTemporalLayers = 2; const uint8_t kNumSpatialLayers = 1; TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers); } TEST_F(VideoSendStreamTest, Vp9NonFlexMode_3Tl1SLayers) { const uint8_t kNumTemporalLayers = 3; const uint8_t kNumSpatialLayers = 1; TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers); } TEST_F(VideoSendStreamTest, Vp9NonFlexMode_1Tl2SLayers) { const uint8_t kNumTemporalLayers = 1; const uint8_t kNumSpatialLayers = 2; TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers); } TEST_F(VideoSendStreamTest, Vp9NonFlexMode_2Tl2SLayers) { const uint8_t kNumTemporalLayers = 2; const uint8_t kNumSpatialLayers = 2; TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers); } TEST_F(VideoSendStreamTest, Vp9NonFlexMode_3Tl2SLayers) { const uint8_t kNumTemporalLayers = 3; const uint8_t kNumSpatialLayers = 2; TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers); } void VideoSendStreamTest::TestVp9NonFlexMode(uint8_t num_temporal_layers, uint8_t num_spatial_layers) { static const size_t kNumFramesToSend = 100; // Set to < kNumFramesToSend and coprime to length of temporal layer // structures to verify temporal id reset on key frame. static const int kKeyFrameInterval = 31; class NonFlexibleMode : public Vp9HeaderObserver { public: NonFlexibleMode(uint8_t num_temporal_layers, uint8_t num_spatial_layers) : num_temporal_layers_(num_temporal_layers), num_spatial_layers_(num_spatial_layers), l_field_(num_temporal_layers > 1 || num_spatial_layers > 1) {} void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { vp9_settings_.flexibleMode = false; vp9_settings_.frameDroppingOn = false; vp9_settings_.keyFrameInterval = kKeyFrameInterval; vp9_settings_.numberOfTemporalLayers = num_temporal_layers_; vp9_settings_.numberOfSpatialLayers = num_spatial_layers_; } void InspectHeader(const RTPVideoHeaderVP9& vp9) override { bool ss_data_expected = !vp9.inter_pic_predicted && vp9.beginning_of_frame && vp9.spatial_idx == 0; EXPECT_EQ(ss_data_expected, vp9.ss_data_available); EXPECT_EQ(vp9.spatial_idx > 0, vp9.inter_layer_predicted); // D EXPECT_EQ(!vp9.inter_pic_predicted, frames_sent_ % kKeyFrameInterval == 0); if (IsNewPictureId(vp9)) { EXPECT_EQ(0, vp9.spatial_idx); EXPECT_EQ(num_spatial_layers_ - 1, last_vp9_.spatial_idx); } VerifyFixedTemporalLayerStructure(vp9, l_field_ ? num_temporal_layers_ : 0); if (frames_sent_ > kNumFramesToSend) observation_complete_.Set(); } const uint8_t num_temporal_layers_; const uint8_t num_spatial_layers_; const bool l_field_; } test(num_temporal_layers, num_spatial_layers); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, Vp9NonFlexModeSmallResolution) { static const size_t kNumFramesToSend = 50; static const int kWidth = 4; static const int kHeight = 4; class NonFlexibleModeResolution : public Vp9HeaderObserver { void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { vp9_settings_.flexibleMode = false; vp9_settings_.numberOfTemporalLayers = 1; vp9_settings_.numberOfSpatialLayers = 1; EXPECT_EQ(1u, encoder_config->streams.size()); encoder_config->streams[0].width = kWidth; encoder_config->streams[0].height = kHeight; } void InspectHeader(const RTPVideoHeaderVP9& vp9_header) override { if (frames_sent_ > kNumFramesToSend) observation_complete_.Set(); } } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, Vp9FlexModeRefCount) { class FlexibleMode : public Vp9HeaderObserver { void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; vp9_settings_.flexibleMode = true; vp9_settings_.numberOfTemporalLayers = 1; vp9_settings_.numberOfSpatialLayers = 2; } void InspectHeader(const RTPVideoHeaderVP9& vp9_header) override { EXPECT_TRUE(vp9_header.flexible_mode); EXPECT_EQ(kNoTl0PicIdx, vp9_header.tl0_pic_idx); if (vp9_header.inter_pic_predicted) { EXPECT_GT(vp9_header.num_ref_pics, 0u); observation_complete_.Set(); } } } test; RunBaseTest(&test); } #endif // !defined(RTC_DISABLE_VP9) } // namespace webrtc