/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/p2p/client/basicportallocator.h" #include #include #include #include "webrtc/p2p/base/basicpacketsocketfactory.h" #include "webrtc/p2p/base/common.h" #include "webrtc/p2p/base/port.h" #include "webrtc/p2p/base/relayport.h" #include "webrtc/p2p/base/stunport.h" #include "webrtc/p2p/base/tcpport.h" #include "webrtc/p2p/base/turnport.h" #include "webrtc/p2p/base/udpport.h" #include "webrtc/base/checks.h" #include "webrtc/base/common.h" #include "webrtc/base/helpers.h" #include "webrtc/base/logging.h" using rtc::CreateRandomId; namespace { enum { MSG_CONFIG_START, MSG_CONFIG_READY, MSG_ALLOCATE, MSG_ALLOCATION_PHASE, MSG_SEQUENCEOBJECTS_CREATED, MSG_CONFIG_STOP, }; const int PHASE_UDP = 0; const int PHASE_RELAY = 1; const int PHASE_TCP = 2; const int PHASE_SSLTCP = 3; const int kNumPhases = 4; } // namespace namespace cricket { const uint32_t DISABLE_ALL_PHASES = PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY; // BasicPortAllocator BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager, rtc::PacketSocketFactory* socket_factory) : network_manager_(network_manager), socket_factory_(socket_factory) { ASSERT(network_manager_ != nullptr); ASSERT(socket_factory_ != nullptr); Construct(); } BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager) : network_manager_(network_manager), socket_factory_(nullptr) { ASSERT(network_manager_ != nullptr); Construct(); } BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager, rtc::PacketSocketFactory* socket_factory, const ServerAddresses& stun_servers) : network_manager_(network_manager), socket_factory_(socket_factory) { ASSERT(socket_factory_ != NULL); SetConfiguration(stun_servers, std::vector(), 0); Construct(); } BasicPortAllocator::BasicPortAllocator( rtc::NetworkManager* network_manager, const ServerAddresses& stun_servers, const rtc::SocketAddress& relay_address_udp, const rtc::SocketAddress& relay_address_tcp, const rtc::SocketAddress& relay_address_ssl) : network_manager_(network_manager), socket_factory_(NULL) { std::vector turn_servers; RelayServerConfig config(RELAY_GTURN); if (!relay_address_udp.IsNil()) { config.ports.push_back(ProtocolAddress(relay_address_udp, PROTO_UDP)); } if (!relay_address_tcp.IsNil()) { config.ports.push_back(ProtocolAddress(relay_address_tcp, PROTO_TCP)); } if (!relay_address_ssl.IsNil()) { config.ports.push_back(ProtocolAddress(relay_address_ssl, PROTO_SSLTCP)); } if (!config.ports.empty()) { turn_servers.push_back(config); } SetConfiguration(stun_servers, turn_servers, 0); Construct(); } void BasicPortAllocator::Construct() { allow_tcp_listen_ = true; } BasicPortAllocator::~BasicPortAllocator() { } PortAllocatorSession* BasicPortAllocator::CreateSessionInternal( const std::string& content_name, int component, const std::string& ice_ufrag, const std::string& ice_pwd) { return new BasicPortAllocatorSession( this, content_name, component, ice_ufrag, ice_pwd); } void BasicPortAllocator::AddTurnServer(const RelayServerConfig& turn_server) { std::vector new_turn_servers = turn_servers(); new_turn_servers.push_back(turn_server); SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size()); } // BasicPortAllocatorSession BasicPortAllocatorSession::BasicPortAllocatorSession( BasicPortAllocator *allocator, const std::string& content_name, int component, const std::string& ice_ufrag, const std::string& ice_pwd) : PortAllocatorSession(content_name, component, ice_ufrag, ice_pwd, allocator->flags()), allocator_(allocator), network_thread_(NULL), socket_factory_(allocator->socket_factory()), allocation_started_(false), network_manager_started_(false), running_(false), allocation_sequences_created_(false) { allocator_->network_manager()->SignalNetworksChanged.connect( this, &BasicPortAllocatorSession::OnNetworksChanged); allocator_->network_manager()->StartUpdating(); } BasicPortAllocatorSession::~BasicPortAllocatorSession() { allocator_->network_manager()->StopUpdating(); if (network_thread_ != NULL) network_thread_->Clear(this); for (uint32_t i = 0; i < sequences_.size(); ++i) { // AllocationSequence should clear it's map entry for turn ports before // ports are destroyed. sequences_[i]->Clear(); } std::vector::iterator it; for (it = ports_.begin(); it != ports_.end(); it++) delete it->port(); for (uint32_t i = 0; i < configs_.size(); ++i) delete configs_[i]; for (uint32_t i = 0; i < sequences_.size(); ++i) delete sequences_[i]; } void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) { if (filter == candidate_filter_) { return; } // We assume the filter will only change from "ALL" to something else. RTC_DCHECK(candidate_filter_ == CF_ALL); candidate_filter_ = filter; for (PortData& port : ports_) { if (!port.has_pairable_candidate()) { continue; } const auto& candidates = port.port()->Candidates(); // Setting a filter may cause a ready port to become non-ready // if it no longer has any pairable candidates. if (!std::any_of(candidates.begin(), candidates.end(), [this, &port](const Candidate& candidate) { return CandidatePairable(candidate, port.port()); })) { port.set_has_pairable_candidate(false); } } } void BasicPortAllocatorSession::StartGettingPorts() { network_thread_ = rtc::Thread::Current(); if (!socket_factory_) { owned_socket_factory_.reset( new rtc::BasicPacketSocketFactory(network_thread_)); socket_factory_ = owned_socket_factory_.get(); } running_ = true; network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_START); } void BasicPortAllocatorSession::StopGettingPorts() { ASSERT(rtc::Thread::Current() == network_thread_); running_ = false; network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_STOP); ClearGettingPorts(); } void BasicPortAllocatorSession::ClearGettingPorts() { network_thread_->Clear(this, MSG_ALLOCATE); for (uint32_t i = 0; i < sequences_.size(); ++i) sequences_[i]->Stop(); } std::vector BasicPortAllocatorSession::ReadyPorts() const { std::vector ret; for (const PortData& port : ports_) { if (port.has_pairable_candidate() && !port.error()) { ret.push_back(port.port()); } } return ret; } std::vector BasicPortAllocatorSession::ReadyCandidates() const { std::vector candidates; for (const PortData& data : ports_) { for (const Candidate& candidate : data.port()->Candidates()) { if (!CheckCandidateFilter(candidate)) { continue; } ProtocolType pvalue; if (!StringToProto(candidate.protocol().c_str(), &pvalue) || !data.sequence()->ProtocolEnabled(pvalue)) { continue; } candidates.push_back(SanitizeRelatedAddress(candidate)); } } return candidates; } Candidate BasicPortAllocatorSession::SanitizeRelatedAddress( const Candidate& c) const { Candidate copy = c; // If adapter enumeration is disabled or host candidates are disabled, // clear the raddr of STUN candidates to avoid local address leakage. bool filter_stun_related_address = ((flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) && (flags() & PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE)) || !(candidate_filter_ & CF_HOST); // If the candidate filter doesn't allow reflexive addresses, empty TURN raddr // to avoid reflexive address leakage. bool filter_turn_related_address = !(candidate_filter_ & CF_REFLEXIVE); if ((c.type() == STUN_PORT_TYPE && filter_stun_related_address) || (c.type() == RELAY_PORT_TYPE && filter_turn_related_address)) { copy.set_related_address( rtc::EmptySocketAddressWithFamily(copy.address().family())); } return copy; } bool BasicPortAllocatorSession::CandidatesAllocationDone() const { // Done only if all required AllocationSequence objects // are created. if (!allocation_sequences_created_) { return false; } // Check that all port allocation sequences are complete (not running). if (std::any_of(sequences_.begin(), sequences_.end(), [](const AllocationSequence* sequence) { return sequence->state() == AllocationSequence::kRunning; })) { return false; } // If all allocated ports are in complete state, session must have got all // expected candidates. Session will trigger candidates allocation complete // signal. if (!std::all_of(ports_.begin(), ports_.end(), [](const PortData& port) { return (port.complete() || port.error()); })) { return false; } return true; } void BasicPortAllocatorSession::OnMessage(rtc::Message *message) { switch (message->message_id) { case MSG_CONFIG_START: ASSERT(rtc::Thread::Current() == network_thread_); GetPortConfigurations(); break; case MSG_CONFIG_READY: ASSERT(rtc::Thread::Current() == network_thread_); OnConfigReady(static_cast(message->pdata)); break; case MSG_ALLOCATE: ASSERT(rtc::Thread::Current() == network_thread_); OnAllocate(); break; case MSG_SEQUENCEOBJECTS_CREATED: ASSERT(rtc::Thread::Current() == network_thread_); OnAllocationSequenceObjectsCreated(); break; case MSG_CONFIG_STOP: ASSERT(rtc::Thread::Current() == network_thread_); OnConfigStop(); break; default: ASSERT(false); } } void BasicPortAllocatorSession::UpdateIceParametersInternal() { for (PortData& port : ports_) { port.port()->set_content_name(content_name()); port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd()); } } void BasicPortAllocatorSession::GetPortConfigurations() { PortConfiguration* config = new PortConfiguration(allocator_->stun_servers(), username(), password()); for (const RelayServerConfig& turn_server : allocator_->turn_servers()) { config->AddRelay(turn_server); } ConfigReady(config); } void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) { network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_READY, config); } // Adds a configuration to the list. void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) { if (config) { configs_.push_back(config); } AllocatePorts(); } void BasicPortAllocatorSession::OnConfigStop() { ASSERT(rtc::Thread::Current() == network_thread_); // If any of the allocated ports have not completed the candidates allocation, // mark those as error. Since session doesn't need any new candidates // at this stage of the allocation, it's safe to discard any new candidates. bool send_signal = false; for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (!it->complete() && !it->error()) { // Updating port state to error, which didn't finish allocating candidates // yet. it->set_error(); send_signal = true; } } // Did we stop any running sequences? for (std::vector::iterator it = sequences_.begin(); it != sequences_.end() && !send_signal; ++it) { if ((*it)->state() == AllocationSequence::kStopped) { send_signal = true; } } // If we stopped anything that was running, send a done signal now. if (send_signal) { MaybeSignalCandidatesAllocationDone(); } } void BasicPortAllocatorSession::AllocatePorts() { ASSERT(rtc::Thread::Current() == network_thread_); network_thread_->Post(RTC_FROM_HERE, this, MSG_ALLOCATE); } void BasicPortAllocatorSession::OnAllocate() { if (network_manager_started_) DoAllocate(); allocation_started_ = true; } void BasicPortAllocatorSession::GetNetworks( std::vector* networks) { networks->clear(); rtc::NetworkManager* network_manager = allocator_->network_manager(); ASSERT(network_manager != nullptr); // If the network permission state is BLOCKED, we just act as if the flag has // been passed in. if (network_manager->enumeration_permission() == rtc::NetworkManager::ENUMERATION_BLOCKED) { set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); } // If the adapter enumeration is disabled, we'll just bind to any address // instead of specific NIC. This is to ensure the same routing for http // traffic by OS is also used here to avoid any local or public IP leakage // during stun process. if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) { network_manager->GetAnyAddressNetworks(networks); } else { network_manager->GetNetworks(networks); } networks->erase(std::remove_if(networks->begin(), networks->end(), [this](rtc::Network* network) { return allocator_->network_ignore_mask() & network->type(); }), networks->end()); if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) { uint16_t lowest_cost = rtc::kNetworkCostMax; for (rtc::Network* network : *networks) { lowest_cost = std::min(lowest_cost, network->GetCost()); } networks->erase(std::remove_if(networks->begin(), networks->end(), [lowest_cost](rtc::Network* network) { return network->GetCost() > lowest_cost + rtc::kNetworkCostLow; }), networks->end()); } } // For each network, see if we have a sequence that covers it already. If not, // create a new sequence to create the appropriate ports. void BasicPortAllocatorSession::DoAllocate() { bool done_signal_needed = false; std::vector networks; GetNetworks(&networks); if (networks.empty()) { LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated"; done_signal_needed = true; } else { for (uint32_t i = 0; i < networks.size(); ++i) { PortConfiguration* config = NULL; if (configs_.size() > 0) config = configs_.back(); uint32_t sequence_flags = flags(); if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { // If all the ports are disabled we should just fire the allocation // done event and return. done_signal_needed = true; break; } if (!config || config->relays.empty()) { // No relay ports specified in this config. sequence_flags |= PORTALLOCATOR_DISABLE_RELAY; } if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) && networks[i]->GetBestIP().family() == AF_INET6) { // Skip IPv6 networks unless the flag's been set. continue; } // Disable phases that would only create ports equivalent to // ones that we have already made. DisableEquivalentPhases(networks[i], config, &sequence_flags); if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { // New AllocationSequence would have nothing to do, so don't make it. continue; } AllocationSequence* sequence = new AllocationSequence(this, networks[i], config, sequence_flags); if (!sequence->Init()) { delete sequence; continue; } done_signal_needed = true; sequence->SignalPortAllocationComplete.connect( this, &BasicPortAllocatorSession::OnPortAllocationComplete); if (running_) sequence->Start(); sequences_.push_back(sequence); } } if (done_signal_needed) { network_thread_->Post(RTC_FROM_HERE, this, MSG_SEQUENCEOBJECTS_CREATED); } } void BasicPortAllocatorSession::OnNetworksChanged() { std::vector networks; GetNetworks(&networks); for (AllocationSequence* sequence : sequences_) { // Remove the network from the allocation sequence if it is not in // |networks|. if (!sequence->network_removed() && std::find(networks.begin(), networks.end(), sequence->network()) == networks.end()) { sequence->OnNetworkRemoved(); } } network_manager_started_ = true; if (allocation_started_) DoAllocate(); } void BasicPortAllocatorSession::DisableEquivalentPhases( rtc::Network* network, PortConfiguration* config, uint32_t* flags) { for (uint32_t i = 0; i < sequences_.size() && (*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES; ++i) { sequences_[i]->DisableEquivalentPhases(network, config, flags); } } void BasicPortAllocatorSession::AddAllocatedPort(Port* port, AllocationSequence * seq, bool prepare_address) { if (!port) return; LOG(LS_INFO) << "Adding allocated port for " << content_name(); port->set_content_name(content_name()); port->set_component(component()); port->set_generation(generation()); if (allocator_->proxy().type != rtc::PROXY_NONE) port->set_proxy(allocator_->user_agent(), allocator_->proxy()); port->set_send_retransmit_count_attribute( (flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0); PortData data(port, seq); ports_.push_back(data); port->SignalCandidateReady.connect( this, &BasicPortAllocatorSession::OnCandidateReady); port->SignalPortComplete.connect(this, &BasicPortAllocatorSession::OnPortComplete); port->SignalDestroyed.connect(this, &BasicPortAllocatorSession::OnPortDestroyed); port->SignalPortError.connect( this, &BasicPortAllocatorSession::OnPortError); LOG_J(LS_INFO, port) << "Added port to allocator"; if (prepare_address) port->PrepareAddress(); } void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() { allocation_sequences_created_ = true; // Send candidate allocation complete signal if we have no sequences. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::OnCandidateReady( Port* port, const Candidate& c) { ASSERT(rtc::Thread::Current() == network_thread_); PortData* data = FindPort(port); ASSERT(data != NULL); // Discarding any candidate signal if port allocation status is // already in completed state. if (data->complete() || data->error()) { return; } ProtocolType pvalue; bool candidate_protocol_enabled = StringToProto(c.protocol().c_str(), &pvalue) && data->sequence()->ProtocolEnabled(pvalue); if (CheckCandidateFilter(c) && candidate_protocol_enabled) { std::vector candidates; candidates.push_back(SanitizeRelatedAddress(c)); SignalCandidatesReady(this, candidates); } // Port has already been marked as having a pairable candidate. // Nothing to do here. if (data->has_pairable_candidate()) { return; } // Mark that the port has a pairable candidate, either because we have a // usable candidate from the port, or simply because the port is bound to the // any address and therefore has no host candidate. This will trigger the port // to start creating candidate pairs (connections) and issue connectivity // checks. if (CandidatePairable(c, port)) { data->set_has_pairable_candidate(true); SignalPortReady(this, port); } } void BasicPortAllocatorSession::OnPortComplete(Port* port) { ASSERT(rtc::Thread::Current() == network_thread_); PortData* data = FindPort(port); ASSERT(data != NULL); // Ignore any late signals. if (data->complete() || data->error()) { return; } // Moving to COMPLETE state. data->set_complete(); // Send candidate allocation complete signal if this was the last port. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::OnPortError(Port* port) { ASSERT(rtc::Thread::Current() == network_thread_); PortData* data = FindPort(port); ASSERT(data != NULL); // We might have already given up on this port and stopped it. if (data->complete() || data->error()) { return; } // SignalAddressError is currently sent from StunPort/TurnPort. // But this signal itself is generic. data->set_error(); // Send candidate allocation complete signal if this was the last port. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::OnProtocolEnabled(AllocationSequence* seq, ProtocolType proto) { std::vector candidates; for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (it->sequence() != seq) continue; const std::vector& potentials = it->port()->Candidates(); for (size_t i = 0; i < potentials.size(); ++i) { if (!CheckCandidateFilter(potentials[i])) { continue; } ProtocolType pvalue; bool candidate_protocol_enabled = StringToProto(potentials[i].protocol().c_str(), &pvalue) && pvalue == proto; if (candidate_protocol_enabled) { candidates.push_back(potentials[i]); } } } if (!candidates.empty()) { SignalCandidatesReady(this, candidates); } } bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const { uint32_t filter = candidate_filter_; // When binding to any address, before sending packets out, the getsockname // returns all 0s, but after sending packets, it'll be the NIC used to // send. All 0s is not a valid ICE candidate address and should be filtered // out. if (c.address().IsAnyIP()) { return false; } if (c.type() == RELAY_PORT_TYPE) { return ((filter & CF_RELAY) != 0); } else if (c.type() == STUN_PORT_TYPE) { return ((filter & CF_REFLEXIVE) != 0); } else if (c.type() == LOCAL_PORT_TYPE) { if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) { // We allow host candidates if the filter allows server-reflexive // candidates and the candidate is a public IP. Because we don't generate // server-reflexive candidates if they have the same IP as the host // candidate (i.e. when the host candidate is a public IP), filtering to // only server-reflexive candidates won't work right when the host // candidates have public IPs. return true; } return ((filter & CF_HOST) != 0); } return false; } bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c, const Port* port) const { bool candidate_signalable = CheckCandidateFilter(c); // When device enumeration is disabled (to prevent non-default IP addresses // from leaking), we ping from some local candidates even though we don't // signal them. However, if host candidates are also disabled (for example, to // prevent even default IP addresses from leaking), we still don't want to // ping from them, even if device enumeration is disabled. Thus, we check for // both device enumeration and host candidates being disabled. bool network_enumeration_disabled = c.address().IsAnyIP(); bool can_ping_from_candidate = (port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME); bool host_candidates_disabled = !(candidate_filter_ & CF_HOST); return candidate_signalable || (network_enumeration_disabled && can_ping_from_candidate && !host_candidates_disabled); } void BasicPortAllocatorSession::OnPortAllocationComplete( AllocationSequence* seq) { // Send candidate allocation complete signal if all ports are done. MaybeSignalCandidatesAllocationDone(); } void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() { if (CandidatesAllocationDone()) { if (pooled()) { LOG(LS_INFO) << "All candidates gathered for pooled session."; } else { LOG(LS_INFO) << "All candidates gathered for " << content_name() << ":" << component() << ":" << generation(); } SignalCandidatesAllocationDone(this); } } void BasicPortAllocatorSession::OnPortDestroyed( PortInterface* port) { ASSERT(rtc::Thread::Current() == network_thread_); for (std::vector::iterator iter = ports_.begin(); iter != ports_.end(); ++iter) { if (port == iter->port()) { ports_.erase(iter); LOG_J(LS_INFO, port) << "Removed port from allocator (" << static_cast(ports_.size()) << " remaining)"; return; } } ASSERT(false); } BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort( Port* port) { for (std::vector::iterator it = ports_.begin(); it != ports_.end(); ++it) { if (it->port() == port) { return &*it; } } return NULL; } // AllocationSequence AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session, rtc::Network* network, PortConfiguration* config, uint32_t flags) : session_(session), network_(network), ip_(network->GetBestIP()), config_(config), state_(kInit), flags_(flags), udp_socket_(), udp_port_(NULL), phase_(0) { } bool AllocationSequence::Init() { if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { udp_socket_.reset(session_->socket_factory()->CreateUdpSocket( rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(), session_->allocator()->max_port())); if (udp_socket_) { udp_socket_->SignalReadPacket.connect( this, &AllocationSequence::OnReadPacket); } // Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP // are next available options to setup a communication channel. } return true; } void AllocationSequence::Clear() { udp_port_ = NULL; turn_ports_.clear(); } void AllocationSequence::OnNetworkRemoved() { // Stop the allocation sequence if its network is gone. Stop(); network_removed_ = true; } AllocationSequence::~AllocationSequence() { session_->network_thread()->Clear(this); } void AllocationSequence::DisableEquivalentPhases(rtc::Network* network, PortConfiguration* config, uint32_t* flags) { if (network_removed_) { // If the network of this allocation sequence has ever gone away, // it won't be equivalent to the new network. return; } if (!((network == network_) && (ip_ == network->GetBestIP()))) { // Different network setup; nothing is equivalent. return; } // Else turn off the stuff that we've already got covered. // Every config implicitly specifies local, so turn that off right away. *flags |= PORTALLOCATOR_DISABLE_UDP; *flags |= PORTALLOCATOR_DISABLE_TCP; if (config_ && config) { if (config_->StunServers() == config->StunServers()) { // Already got this STUN servers covered. *flags |= PORTALLOCATOR_DISABLE_STUN; } if (!config_->relays.empty()) { // Already got relays covered. // NOTE: This will even skip a _different_ set of relay servers if we // were to be given one, but that never happens in our codebase. Should // probably get rid of the list in PortConfiguration and just keep a // single relay server in each one. *flags |= PORTALLOCATOR_DISABLE_RELAY; } } } void AllocationSequence::Start() { state_ = kRunning; session_->network_thread()->Post(RTC_FROM_HERE, this, MSG_ALLOCATION_PHASE); } void AllocationSequence::Stop() { // If the port is completed, don't set it to stopped. if (state_ == kRunning) { state_ = kStopped; session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE); } } void AllocationSequence::OnMessage(rtc::Message* msg) { ASSERT(rtc::Thread::Current() == session_->network_thread()); ASSERT(msg->message_id == MSG_ALLOCATION_PHASE); const char* const PHASE_NAMES[kNumPhases] = { "Udp", "Relay", "Tcp", "SslTcp" }; // Perform all of the phases in the current step. LOG_J(LS_INFO, network_) << "Allocation Phase=" << PHASE_NAMES[phase_]; switch (phase_) { case PHASE_UDP: CreateUDPPorts(); CreateStunPorts(); EnableProtocol(PROTO_UDP); break; case PHASE_RELAY: CreateRelayPorts(); break; case PHASE_TCP: CreateTCPPorts(); EnableProtocol(PROTO_TCP); break; case PHASE_SSLTCP: state_ = kCompleted; EnableProtocol(PROTO_SSLTCP); break; default: ASSERT(false); } if (state() == kRunning) { ++phase_; session_->network_thread()->PostDelayed(RTC_FROM_HERE, session_->allocator()->step_delay(), this, MSG_ALLOCATION_PHASE); } else { // If all phases in AllocationSequence are completed, no allocation // steps needed further. Canceling pending signal. session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE); SignalPortAllocationComplete(this); } } void AllocationSequence::EnableProtocol(ProtocolType proto) { if (!ProtocolEnabled(proto)) { protocols_.push_back(proto); session_->OnProtocolEnabled(this, proto); } } bool AllocationSequence::ProtocolEnabled(ProtocolType proto) const { for (ProtocolList::const_iterator it = protocols_.begin(); it != protocols_.end(); ++it) { if (*it == proto) return true; } return false; } void AllocationSequence::CreateUDPPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) { LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping."; return; } // TODO(mallinath) - Remove UDPPort creating socket after shared socket // is enabled completely. UDPPort* port = NULL; bool emit_local_candidate_for_anyaddress = !IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) { port = UDPPort::Create( session_->network_thread(), session_->socket_factory(), network_, udp_socket_.get(), session_->username(), session_->password(), session_->allocator()->origin(), emit_local_candidate_for_anyaddress); } else { port = UDPPort::Create( session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), session_->allocator()->origin(), emit_local_candidate_for_anyaddress); } if (port) { // If shared socket is enabled, STUN candidate will be allocated by the // UDPPort. if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { udp_port_ = port; port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed); // If STUN is not disabled, setting stun server address to port. if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { if (config_ && !config_->StunServers().empty()) { LOG(LS_INFO) << "AllocationSequence: UDPPort will be handling the " << "STUN candidate generation."; port->set_server_addresses(config_->StunServers()); } } } session_->AddAllocatedPort(port, this, true); } } void AllocationSequence::CreateTCPPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) { LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping."; return; } Port* port = TCPPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), session_->allocator()->allow_tcp_listen()); if (port) { session_->AddAllocatedPort(port, this, true); // Since TCPPort is not created using shared socket, |port| will not be // added to the dequeue. } } void AllocationSequence::CreateStunPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping."; return; } if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { return; } if (!(config_ && !config_->StunServers().empty())) { LOG(LS_WARNING) << "AllocationSequence: No STUN server configured, skipping."; return; } StunPort* port = StunPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), config_->StunServers(), session_->allocator()->origin()); if (port) { session_->AddAllocatedPort(port, this, true); // Since StunPort is not created using shared socket, |port| will not be // added to the dequeue. } } void AllocationSequence::CreateRelayPorts() { if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) { LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping."; return; } // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we // ought to have a relay list for them here. ASSERT(config_ && !config_->relays.empty()); if (!(config_ && !config_->relays.empty())) { LOG(LS_WARNING) << "AllocationSequence: No relay server configured, skipping."; return; } PortConfiguration::RelayList::const_iterator relay; for (relay = config_->relays.begin(); relay != config_->relays.end(); ++relay) { if (relay->type == RELAY_GTURN) { CreateGturnPort(*relay); } else if (relay->type == RELAY_TURN) { CreateTurnPort(*relay); } else { ASSERT(false); } } } void AllocationSequence::CreateGturnPort(const RelayServerConfig& config) { // TODO(mallinath) - Rename RelayPort to GTurnPort. RelayPort* port = RelayPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), config_->username, config_->password); if (port) { // Since RelayPort is not created using shared socket, |port| will not be // added to the dequeue. // Note: We must add the allocated port before we add addresses because // the latter will create candidates that need name and preference // settings. However, we also can't prepare the address (normally // done by AddAllocatedPort) until we have these addresses. So we // wait to do that until below. session_->AddAllocatedPort(port, this, false); // Add the addresses of this protocol. PortList::const_iterator relay_port; for (relay_port = config.ports.begin(); relay_port != config.ports.end(); ++relay_port) { port->AddServerAddress(*relay_port); port->AddExternalAddress(*relay_port); } // Start fetching an address for this port. port->PrepareAddress(); } } void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) { PortList::const_iterator relay_port; for (relay_port = config.ports.begin(); relay_port != config.ports.end(); ++relay_port) { TurnPort* port = NULL; // Skip UDP connections to relay servers if it's disallowed. if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) && relay_port->proto == PROTO_UDP) { continue; } // Shared socket mode must be enabled only for UDP based ports. Hence // don't pass shared socket for ports which will create TCP sockets. // TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled // due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537 if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && relay_port->proto == PROTO_UDP && udp_socket_) { port = TurnPort::Create(session_->network_thread(), session_->socket_factory(), network_, udp_socket_.get(), session_->username(), session_->password(), *relay_port, config.credentials, config.priority, session_->allocator()->origin()); turn_ports_.push_back(port); // Listen to the port destroyed signal, to allow AllocationSequence to // remove entrt from it's map. port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed); } else { port = TurnPort::Create(session_->network_thread(), session_->socket_factory(), network_, ip_, session_->allocator()->min_port(), session_->allocator()->max_port(), session_->username(), session_->password(), *relay_port, config.credentials, config.priority, session_->allocator()->origin()); } ASSERT(port != NULL); session_->AddAllocatedPort(port, this, true); } } void AllocationSequence::OnReadPacket( rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const rtc::PacketTime& packet_time) { ASSERT(socket == udp_socket_.get()); bool turn_port_found = false; // Try to find the TurnPort that matches the remote address. Note that the // message could be a STUN binding response if the TURN server is also used as // a STUN server. We don't want to parse every message here to check if it is // a STUN binding response, so we pass the message to TurnPort regardless of // the message type. The TurnPort will just ignore the message since it will // not find any request by transaction ID. for (TurnPort* port : turn_ports_) { if (port->server_address().address == remote_addr) { if (port->HandleIncomingPacket(socket, data, size, remote_addr, packet_time)) { return; } turn_port_found = true; } } if (udp_port_) { const ServerAddresses& stun_servers = udp_port_->server_addresses(); // Pass the packet to the UdpPort if there is no matching TurnPort, or if // the TURN server is also a STUN server. if (!turn_port_found || stun_servers.find(remote_addr) != stun_servers.end()) { RTC_DCHECK(udp_port_->SharedSocket()); udp_port_->HandleIncomingPacket(socket, data, size, remote_addr, packet_time); } } } void AllocationSequence::OnPortDestroyed(PortInterface* port) { if (udp_port_ == port) { udp_port_ = NULL; return; } auto it = std::find(turn_ports_.begin(), turn_ports_.end(), port); if (it != turn_ports_.end()) { turn_ports_.erase(it); } else { LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port."; ASSERT(false); } } // PortConfiguration PortConfiguration::PortConfiguration( const rtc::SocketAddress& stun_address, const std::string& username, const std::string& password) : stun_address(stun_address), username(username), password(password) { if (!stun_address.IsNil()) stun_servers.insert(stun_address); } PortConfiguration::PortConfiguration(const ServerAddresses& stun_servers, const std::string& username, const std::string& password) : stun_servers(stun_servers), username(username), password(password) { if (!stun_servers.empty()) stun_address = *(stun_servers.begin()); } ServerAddresses PortConfiguration::StunServers() { if (!stun_address.IsNil() && stun_servers.find(stun_address) == stun_servers.end()) { stun_servers.insert(stun_address); } // Every UDP TURN server should also be used as a STUN server. ServerAddresses turn_servers = GetRelayServerAddresses(RELAY_TURN, PROTO_UDP); for (const rtc::SocketAddress& turn_server : turn_servers) { if (stun_servers.find(turn_server) == stun_servers.end()) { stun_servers.insert(turn_server); } } return stun_servers; } void PortConfiguration::AddRelay(const RelayServerConfig& config) { relays.push_back(config); } bool PortConfiguration::SupportsProtocol( const RelayServerConfig& relay, ProtocolType type) const { PortList::const_iterator relay_port; for (relay_port = relay.ports.begin(); relay_port != relay.ports.end(); ++relay_port) { if (relay_port->proto == type) return true; } return false; } bool PortConfiguration::SupportsProtocol(RelayType turn_type, ProtocolType type) const { for (size_t i = 0; i < relays.size(); ++i) { if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) return true; } return false; } ServerAddresses PortConfiguration::GetRelayServerAddresses( RelayType turn_type, ProtocolType type) const { ServerAddresses servers; for (size_t i = 0; i < relays.size(); ++i) { if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) { servers.insert(relays[i].ports.front().address); } } return servers; } } // namespace cricket