/* * Copyright 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // NOTICE: androidmediaencoder_jni.h must be included before // androidmediacodeccommon.h to avoid build errors. #include "webrtc/api/java/jni/androidmediaencoder_jni.h" #include #include #include #include "third_party/libyuv/include/libyuv/convert.h" #include "third_party/libyuv/include/libyuv/convert_from.h" #include "third_party/libyuv/include/libyuv/video_common.h" #include "webrtc/api/java/jni/androidmediacodeccommon.h" #include "webrtc/api/java/jni/classreferenceholder.h" #include "webrtc/api/java/jni/native_handle_impl.h" #include "webrtc/base/bind.h" #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/base/thread.h" #include "webrtc/base/thread_checker.h" #include "webrtc/base/timeutils.h" #include "webrtc/common_types.h" #include "webrtc/modules/video_coding/include/video_codec_interface.h" #include "webrtc/modules/video_coding/utility/h264_bitstream_parser.h" #include "webrtc/modules/video_coding/utility/quality_scaler.h" #include "webrtc/modules/video_coding/utility/vp8_header_parser.h" #include "webrtc/system_wrappers/include/field_trial.h" #include "webrtc/system_wrappers/include/logcat_trace_context.h" using rtc::Bind; using rtc::Thread; using rtc::ThreadManager; using webrtc::CodecSpecificInfo; using webrtc::EncodedImage; using webrtc::VideoFrame; using webrtc::RTPFragmentationHeader; using webrtc::VideoCodec; using webrtc::VideoCodecType; using webrtc::kVideoCodecH264; using webrtc::kVideoCodecVP8; using webrtc::kVideoCodecVP9; using webrtc::QualityScaler; namespace webrtc_jni { // H.264 start code length. #define H264_SC_LENGTH 4 // Maximum allowed NALUs in one output frame. #define MAX_NALUS_PERFRAME 32 // Maximum supported HW video encoder resolution. #define MAX_VIDEO_WIDTH 1280 #define MAX_VIDEO_HEIGHT 1280 // Maximum supported HW video encoder fps. #define MAX_VIDEO_FPS 30 // Maximum allowed fps value in SetRates() call. #define MAX_ALLOWED_VIDEO_FPS 60 // Maximum allowed frames in encoder input queue. #define MAX_ENCODER_Q_SIZE 2 // Maximum amount of dropped frames caused by full encoder queue - exceeding // this threshold means that encoder probably got stuck and need to be reset. #define ENCODER_STALL_FRAMEDROP_THRESHOLD 60 // Logging macros. #define TAG_ENCODER "MediaCodecVideoEncoder" #ifdef TRACK_BUFFER_TIMING #define ALOGV(...) __android_log_print(ANDROID_LOG_VERBOSE, TAG_ENCODER, __VA_ARGS__) #else #define ALOGV(...) #endif #define ALOGD LOG_TAG(rtc::LS_INFO, TAG_ENCODER) #define ALOGW LOG_TAG(rtc::LS_WARNING, TAG_ENCODER) #define ALOGE LOG_TAG(rtc::LS_ERROR, TAG_ENCODER) namespace { // Maximum time limit between incoming frames before requesting a key frame. const size_t kFrameDiffThresholdMs = 1100; const int kMinKeyFrameInterval = 2; } // namespace // MediaCodecVideoEncoder is a webrtc::VideoEncoder implementation that uses // Android's MediaCodec SDK API behind the scenes to implement (hopefully) // HW-backed video encode. This C++ class is implemented as a very thin shim, // delegating all of the interesting work to org.webrtc.MediaCodecVideoEncoder. // MediaCodecVideoEncoder is created, operated, and destroyed on a single // thread, currently the libjingle Worker thread. class MediaCodecVideoEncoder : public webrtc::VideoEncoder, public rtc::MessageHandler { public: virtual ~MediaCodecVideoEncoder(); MediaCodecVideoEncoder(JNIEnv* jni, VideoCodecType codecType, jobject egl_context); // webrtc::VideoEncoder implementation. Everything trampolines to // |codec_thread_| for execution. int32_t InitEncode(const webrtc::VideoCodec* codec_settings, int32_t /* number_of_cores */, size_t /* max_payload_size */) override; int32_t Encode(const webrtc::VideoFrame& input_image, const webrtc::CodecSpecificInfo* /* codec_specific_info */, const std::vector* frame_types) override; int32_t RegisterEncodeCompleteCallback( webrtc::EncodedImageCallback* callback) override; int32_t Release() override; int32_t SetChannelParameters(uint32_t /* packet_loss */, int64_t /* rtt */) override; int32_t SetRates(uint32_t new_bit_rate, uint32_t frame_rate) override; // rtc::MessageHandler implementation. void OnMessage(rtc::Message* msg) override; void OnDroppedFrame() override; bool SupportsNativeHandle() const override { return egl_context_ != nullptr; } const char* ImplementationName() const override; private: // ResetCodecOnCodecThread() calls ReleaseOnCodecThread() and // InitEncodeOnCodecThread() in an attempt to restore the codec to an // operable state. Necessary after all manner of OMX-layer errors. bool ResetCodecOnCodecThread(); // Implementation of webrtc::VideoEncoder methods above, all running on the // codec thread exclusively. // // If width==0 then this is assumed to be a re-initialization and the // previously-current values are reused instead of the passed parameters // (makes it easier to reason about thread-safety). int32_t InitEncodeOnCodecThread(int width, int height, int kbps, int fps, bool use_surface); // Reconfigure to match |frame| in width, height. Also reconfigures the // encoder if |frame| is a texture/byte buffer and the encoder is initialized // for byte buffer/texture. Returns false if reconfiguring fails. bool MaybeReconfigureEncoderOnCodecThread(const webrtc::VideoFrame& frame); int32_t EncodeOnCodecThread( const webrtc::VideoFrame& input_image, const std::vector* frame_types, const int64_t frame_input_time_ms); bool EncodeByteBufferOnCodecThread(JNIEnv* jni, bool key_frame, const webrtc::VideoFrame& frame, int input_buffer_index); bool EncodeTextureOnCodecThread(JNIEnv* jni, bool key_frame, const webrtc::VideoFrame& frame); int32_t RegisterEncodeCompleteCallbackOnCodecThread( webrtc::EncodedImageCallback* callback); int32_t ReleaseOnCodecThread(); int32_t SetRatesOnCodecThread(uint32_t new_bit_rate, uint32_t frame_rate); void OnDroppedFrameOnCodecThread(); // Helper accessors for MediaCodecVideoEncoder$OutputBufferInfo members. int GetOutputBufferInfoIndex(JNIEnv* jni, jobject j_output_buffer_info); jobject GetOutputBufferInfoBuffer(JNIEnv* jni, jobject j_output_buffer_info); bool GetOutputBufferInfoIsKeyFrame(JNIEnv* jni, jobject j_output_buffer_info); jlong GetOutputBufferInfoPresentationTimestampUs( JNIEnv* jni, jobject j_output_buffer_info); // Deliver any outputs pending in the MediaCodec to our |callback_| and return // true on success. bool DeliverPendingOutputs(JNIEnv* jni); // Search for H.264 start codes. int32_t NextNaluPosition(uint8_t *buffer, size_t buffer_size); // Displays encoder statistics. void LogStatistics(bool force_log); // Type of video codec. VideoCodecType codecType_; // Valid all the time since RegisterEncodeCompleteCallback() Invoke()s to // |codec_thread_| synchronously. webrtc::EncodedImageCallback* callback_; // State that is constant for the lifetime of this object once the ctor // returns. std::unique_ptr codec_thread_; // Thread on which to operate MediaCodec. rtc::ThreadChecker codec_thread_checker_; ScopedGlobalRef j_media_codec_video_encoder_class_; ScopedGlobalRef j_media_codec_video_encoder_; jmethodID j_init_encode_method_; jmethodID j_get_input_buffers_method_; jmethodID j_dequeue_input_buffer_method_; jmethodID j_encode_buffer_method_; jmethodID j_encode_texture_method_; jmethodID j_release_method_; jmethodID j_set_rates_method_; jmethodID j_dequeue_output_buffer_method_; jmethodID j_release_output_buffer_method_; jfieldID j_color_format_field_; jfieldID j_info_index_field_; jfieldID j_info_buffer_field_; jfieldID j_info_is_key_frame_field_; jfieldID j_info_presentation_timestamp_us_field_; // State that is valid only between InitEncode() and the next Release(). // Touched only on codec_thread_ so no explicit synchronization necessary. int width_; // Frame width in pixels. int height_; // Frame height in pixels. bool inited_; bool use_surface_; uint16_t picture_id_; enum libyuv::FourCC encoder_fourcc_; // Encoder color space format. int last_set_bitrate_kbps_; // Last-requested bitrate in kbps. int last_set_fps_; // Last-requested frame rate. int64_t current_timestamp_us_; // Current frame timestamps in us. int frames_received_; // Number of frames received by encoder. int frames_encoded_; // Number of frames encoded by encoder. int frames_dropped_media_encoder_; // Number of frames dropped by encoder. // Number of dropped frames caused by full queue. int consecutive_full_queue_frame_drops_; int64_t stat_start_time_ms_; // Start time for statistics. int current_frames_; // Number of frames in the current statistics interval. int current_bytes_; // Encoded bytes in the current statistics interval. int current_acc_qp_; // Accumulated QP in the current statistics interval. int current_encoding_time_ms_; // Overall encoding time in the current second int64_t last_input_timestamp_ms_; // Timestamp of last received yuv frame. int64_t last_output_timestamp_ms_; // Timestamp of last encoded frame. struct InputFrameInfo { InputFrameInfo(int64_t encode_start_time, int32_t frame_timestamp, int64_t frame_render_time_ms, webrtc::VideoRotation rotation) : encode_start_time(encode_start_time), frame_timestamp(frame_timestamp), frame_render_time_ms(frame_render_time_ms), rotation(rotation) {} // Time when video frame is sent to encoder input. const int64_t encode_start_time; // Input frame information. const int32_t frame_timestamp; const int64_t frame_render_time_ms; const webrtc::VideoRotation rotation; }; std::list input_frame_infos_; int32_t output_timestamp_; // Last output frame timestamp from // |input_frame_infos_|. int64_t output_render_time_ms_; // Last output frame render time from // |input_frame_infos_|. webrtc::VideoRotation output_rotation_; // Last output frame rotation from // |input_frame_infos_|. // Frame size in bytes fed to MediaCodec. int yuv_size_; // True only when between a callback_->Encoded() call return a positive value // and the next Encode() call being ignored. bool drop_next_input_frame_; // Global references; must be deleted in Release(). std::vector input_buffers_; QualityScaler quality_scaler_; // Dynamic resolution change, off by default. bool scale_; // H264 bitstream parser, used to extract QP from encoded bitstreams. webrtc::H264BitstreamParser h264_bitstream_parser_; // VP9 variables to populate codec specific structure. webrtc::GofInfoVP9 gof_; // Contains each frame's temporal information for // non-flexible VP9 mode. uint8_t tl0_pic_idx_; size_t gof_idx_; // EGL context - owned by factory, should not be allocated/destroyed // by MediaCodecVideoEncoder. jobject egl_context_; // Temporary fix for VP8. // Sends a key frame if frames are largely spaced apart (possibly // corresponding to a large image change). int64_t last_frame_received_ms_; int frames_received_since_last_key_; webrtc::VideoCodecMode codec_mode_; }; MediaCodecVideoEncoder::~MediaCodecVideoEncoder() { // Call Release() to ensure no more callbacks to us after we are deleted. Release(); } MediaCodecVideoEncoder::MediaCodecVideoEncoder( JNIEnv* jni, VideoCodecType codecType, jobject egl_context) : codecType_(codecType), callback_(NULL), codec_thread_(new Thread()), j_media_codec_video_encoder_class_( jni, FindClass(jni, "org/webrtc/MediaCodecVideoEncoder")), j_media_codec_video_encoder_( jni, jni->NewObject(*j_media_codec_video_encoder_class_, GetMethodID(jni, *j_media_codec_video_encoder_class_, "", "()V"))), inited_(false), use_surface_(false), picture_id_(0), egl_context_(egl_context) { ScopedLocalRefFrame local_ref_frame(jni); // It would be nice to avoid spinning up a new thread per MediaCodec, and // instead re-use e.g. the PeerConnectionFactory's |worker_thread_|, but bug // 2732 means that deadlocks abound. This class synchronously trampolines // to |codec_thread_|, so if anything else can be coming to _us_ from // |codec_thread_|, or from any thread holding the |_sendCritSect| described // in the bug, we have a problem. For now work around that with a dedicated // thread. codec_thread_->SetName("MediaCodecVideoEncoder", NULL); RTC_CHECK(codec_thread_->Start()) << "Failed to start MediaCodecVideoEncoder"; codec_thread_checker_.DetachFromThread(); jclass j_output_buffer_info_class = FindClass(jni, "org/webrtc/MediaCodecVideoEncoder$OutputBufferInfo"); j_init_encode_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "initEncode", "(Lorg/webrtc/MediaCodecVideoEncoder$VideoCodecType;" "IIIILorg/webrtc/EglBase14$Context;)Z"); j_get_input_buffers_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "getInputBuffers", "()[Ljava/nio/ByteBuffer;"); j_dequeue_input_buffer_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "dequeueInputBuffer", "()I"); j_encode_buffer_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "encodeBuffer", "(ZIIJ)Z"); j_encode_texture_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "encodeTexture", "(ZI[FJ)Z"); j_release_method_ = GetMethodID(jni, *j_media_codec_video_encoder_class_, "release", "()V"); j_set_rates_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "setRates", "(II)Z"); j_dequeue_output_buffer_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "dequeueOutputBuffer", "()Lorg/webrtc/MediaCodecVideoEncoder$OutputBufferInfo;"); j_release_output_buffer_method_ = GetMethodID( jni, *j_media_codec_video_encoder_class_, "releaseOutputBuffer", "(I)Z"); j_color_format_field_ = GetFieldID(jni, *j_media_codec_video_encoder_class_, "colorFormat", "I"); j_info_index_field_ = GetFieldID(jni, j_output_buffer_info_class, "index", "I"); j_info_buffer_field_ = GetFieldID( jni, j_output_buffer_info_class, "buffer", "Ljava/nio/ByteBuffer;"); j_info_is_key_frame_field_ = GetFieldID(jni, j_output_buffer_info_class, "isKeyFrame", "Z"); j_info_presentation_timestamp_us_field_ = GetFieldID( jni, j_output_buffer_info_class, "presentationTimestampUs", "J"); CHECK_EXCEPTION(jni) << "MediaCodecVideoEncoder ctor failed"; srand(time(NULL)); AllowBlockingCalls(); } int32_t MediaCodecVideoEncoder::InitEncode( const webrtc::VideoCodec* codec_settings, int32_t /* number_of_cores */, size_t /* max_payload_size */) { if (codec_settings == NULL) { ALOGE << "NULL VideoCodec instance"; return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Factory should guard against other codecs being used with us. RTC_CHECK(codec_settings->codecType == codecType_) << "Unsupported codec " << codec_settings->codecType << " for " << codecType_; codec_mode_ = codec_settings->mode; int init_width = codec_settings->width; int init_height = codec_settings->height; scale_ = codecType_ != kVideoCodecVP9; ALOGD << "InitEncode request: " << init_width << " x " << init_height; ALOGD << "Encoder automatic resize " << (scale_ ? "enabled" : "disabled"); if (scale_) { if (codecType_ == kVideoCodecVP8) { quality_scaler_.Init( QualityScaler::kLowVp8QpThreshold, QualityScaler::kBadVp8QpThreshold, codec_settings->startBitrate, codec_settings->width, codec_settings->height, codec_settings->maxFramerate); } else if (codecType_ == kVideoCodecH264) { quality_scaler_.Init(QualityScaler::kLowH264QpThreshold, QualityScaler::kBadH264QpThreshold, codec_settings->startBitrate, codec_settings->width, codec_settings->height, codec_settings->maxFramerate); } else { // When adding codec support to additional hardware codecs, also configure // their QP thresholds for scaling. RTC_NOTREACHED() << "Unsupported codec without configured QP thresholds."; scale_ = false; } QualityScaler::Resolution res = quality_scaler_.GetScaledResolution(); init_width = res.width; init_height = res.height; ALOGD << "Scaled resolution: " << init_width << " x " << init_height; } return codec_thread_->Invoke( RTC_FROM_HERE, Bind(&MediaCodecVideoEncoder::InitEncodeOnCodecThread, this, init_width, init_height, codec_settings->startBitrate, codec_settings->maxFramerate, codec_settings->expect_encode_from_texture)); } int32_t MediaCodecVideoEncoder::Encode( const webrtc::VideoFrame& frame, const webrtc::CodecSpecificInfo* /* codec_specific_info */, const std::vector* frame_types) { return codec_thread_->Invoke( RTC_FROM_HERE, Bind(&MediaCodecVideoEncoder::EncodeOnCodecThread, this, frame, frame_types, rtc::TimeMillis())); } int32_t MediaCodecVideoEncoder::RegisterEncodeCompleteCallback( webrtc::EncodedImageCallback* callback) { return codec_thread_->Invoke( RTC_FROM_HERE, Bind(&MediaCodecVideoEncoder::RegisterEncodeCompleteCallbackOnCodecThread, this, callback)); } int32_t MediaCodecVideoEncoder::Release() { ALOGD << "EncoderRelease request"; return codec_thread_->Invoke( RTC_FROM_HERE, Bind(&MediaCodecVideoEncoder::ReleaseOnCodecThread, this)); } int32_t MediaCodecVideoEncoder::SetChannelParameters(uint32_t /* packet_loss */, int64_t /* rtt */) { return WEBRTC_VIDEO_CODEC_OK; } int32_t MediaCodecVideoEncoder::SetRates(uint32_t new_bit_rate, uint32_t frame_rate) { return codec_thread_->Invoke( RTC_FROM_HERE, Bind(&MediaCodecVideoEncoder::SetRatesOnCodecThread, this, new_bit_rate, frame_rate)); } void MediaCodecVideoEncoder::OnMessage(rtc::Message* msg) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); JNIEnv* jni = AttachCurrentThreadIfNeeded(); ScopedLocalRefFrame local_ref_frame(jni); // We only ever send one message to |this| directly (not through a Bind()'d // functor), so expect no ID/data. RTC_CHECK(!msg->message_id) << "Unexpected message!"; RTC_CHECK(!msg->pdata) << "Unexpected message!"; if (!inited_) { return; } // It would be nice to recover from a failure here if one happened, but it's // unclear how to signal such a failure to the app, so instead we stay silent // about it and let the next app-called API method reveal the borkedness. DeliverPendingOutputs(jni); // If there aren't more frames to deliver, we can start polling at lower rate. if (input_frame_infos_.empty()) { codec_thread_->PostDelayed(RTC_FROM_HERE, kMediaCodecPollNoFramesMs, this); } else { codec_thread_->PostDelayed(RTC_FROM_HERE, kMediaCodecPollMs, this); } // Call log statistics here so it's called even if no frames are being // delivered. LogStatistics(false); } bool MediaCodecVideoEncoder::ResetCodecOnCodecThread() { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); ALOGE << "ResetOnCodecThread"; if (ReleaseOnCodecThread() != WEBRTC_VIDEO_CODEC_OK || InitEncodeOnCodecThread(width_, height_, 0, 0, false) != WEBRTC_VIDEO_CODEC_OK) { // TODO(fischman): wouldn't it be nice if there was a way to gracefully // degrade to a SW encoder at this point? There isn't one AFAICT :( // https://code.google.com/p/webrtc/issues/detail?id=2920 return false; } return true; } int32_t MediaCodecVideoEncoder::InitEncodeOnCodecThread( int width, int height, int kbps, int fps, bool use_surface) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); RTC_CHECK(!use_surface || egl_context_ != nullptr) << "EGL context not set."; JNIEnv* jni = AttachCurrentThreadIfNeeded(); ScopedLocalRefFrame local_ref_frame(jni); ALOGD << "InitEncodeOnCodecThread Type: " << (int)codecType_ << ", " << width << " x " << height << ". Bitrate: " << kbps << " kbps. Fps: " << fps; if (kbps == 0) { kbps = last_set_bitrate_kbps_; } if (fps == 0) { fps = MAX_VIDEO_FPS; } width_ = width; height_ = height; last_set_bitrate_kbps_ = kbps; last_set_fps_ = (fps < MAX_VIDEO_FPS) ? fps : MAX_VIDEO_FPS; yuv_size_ = width_ * height_ * 3 / 2; frames_received_ = 0; frames_encoded_ = 0; frames_dropped_media_encoder_ = 0; consecutive_full_queue_frame_drops_ = 0; current_timestamp_us_ = 0; stat_start_time_ms_ = rtc::TimeMillis(); current_frames_ = 0; current_bytes_ = 0; current_acc_qp_ = 0; current_encoding_time_ms_ = 0; last_input_timestamp_ms_ = -1; last_output_timestamp_ms_ = -1; output_timestamp_ = 0; output_render_time_ms_ = 0; input_frame_infos_.clear(); drop_next_input_frame_ = false; use_surface_ = use_surface; picture_id_ = static_cast(rand()) & 0x7FFF; gof_.SetGofInfoVP9(webrtc::TemporalStructureMode::kTemporalStructureMode1); tl0_pic_idx_ = static_cast(rand()); gof_idx_ = 0; last_frame_received_ms_ = -1; frames_received_since_last_key_ = kMinKeyFrameInterval; // We enforce no extra stride/padding in the format creation step. jobject j_video_codec_enum = JavaEnumFromIndexAndClassName( jni, "MediaCodecVideoEncoder$VideoCodecType", codecType_); const bool encode_status = jni->CallBooleanMethod( *j_media_codec_video_encoder_, j_init_encode_method_, j_video_codec_enum, width, height, kbps, fps, (use_surface ? egl_context_ : nullptr)); if (!encode_status) { ALOGE << "Failed to configure encoder."; return WEBRTC_VIDEO_CODEC_ERROR; } CHECK_EXCEPTION(jni); if (!use_surface) { jobjectArray input_buffers = reinterpret_cast( jni->CallObjectMethod(*j_media_codec_video_encoder_, j_get_input_buffers_method_)); CHECK_EXCEPTION(jni); if (IsNull(jni, input_buffers)) { return WEBRTC_VIDEO_CODEC_ERROR; } switch (GetIntField(jni, *j_media_codec_video_encoder_, j_color_format_field_)) { case COLOR_FormatYUV420Planar: encoder_fourcc_ = libyuv::FOURCC_YU12; break; case COLOR_FormatYUV420SemiPlanar: case COLOR_QCOM_FormatYUV420SemiPlanar: case COLOR_QCOM_FORMATYUV420PackedSemiPlanar32m: encoder_fourcc_ = libyuv::FOURCC_NV12; break; default: LOG(LS_ERROR) << "Wrong color format."; return WEBRTC_VIDEO_CODEC_ERROR; } size_t num_input_buffers = jni->GetArrayLength(input_buffers); RTC_CHECK(input_buffers_.empty()) << "Unexpected double InitEncode without Release"; input_buffers_.resize(num_input_buffers); for (size_t i = 0; i < num_input_buffers; ++i) { input_buffers_[i] = jni->NewGlobalRef(jni->GetObjectArrayElement(input_buffers, i)); int64_t yuv_buffer_capacity = jni->GetDirectBufferCapacity(input_buffers_[i]); CHECK_EXCEPTION(jni); RTC_CHECK(yuv_buffer_capacity >= yuv_size_) << "Insufficient capacity"; } } inited_ = true; return WEBRTC_VIDEO_CODEC_OK; } int32_t MediaCodecVideoEncoder::EncodeOnCodecThread( const webrtc::VideoFrame& frame, const std::vector* frame_types, const int64_t frame_input_time_ms) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); JNIEnv* jni = AttachCurrentThreadIfNeeded(); ScopedLocalRefFrame local_ref_frame(jni); if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } bool send_key_frame = false; if (codec_mode_ == webrtc::kRealtimeVideo) { ++frames_received_since_last_key_; int64_t now_ms = rtc::TimeMillis(); if (last_frame_received_ms_ != -1 && (now_ms - last_frame_received_ms_) > kFrameDiffThresholdMs) { // Add limit to prevent triggering a key for every frame for very low // framerates (e.g. if frame diff > kFrameDiffThresholdMs). if (frames_received_since_last_key_ > kMinKeyFrameInterval) { ALOGD << "Send key, frame diff: " << (now_ms - last_frame_received_ms_); send_key_frame = true; } frames_received_since_last_key_ = 0; } last_frame_received_ms_ = now_ms; } frames_received_++; if (!DeliverPendingOutputs(jni)) { if (!ResetCodecOnCodecThread()) return WEBRTC_VIDEO_CODEC_ERROR; } if (frames_encoded_ < kMaxEncodedLogFrames) { ALOGD << "Encoder frame in # " << (frames_received_ - 1) << ". TS: " << (int)(current_timestamp_us_ / 1000) << ". Q: " << input_frame_infos_.size() << ". Fps: " << last_set_fps_ << ". Kbps: " << last_set_bitrate_kbps_; } if (drop_next_input_frame_) { ALOGW << "Encoder drop frame - failed callback."; drop_next_input_frame_ = false; current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_; frames_dropped_media_encoder_++; OnDroppedFrameOnCodecThread(); return WEBRTC_VIDEO_CODEC_OK; } RTC_CHECK(frame_types->size() == 1) << "Unexpected stream count"; // Check if we accumulated too many frames in encoder input buffers and drop // frame if so. if (input_frame_infos_.size() > MAX_ENCODER_Q_SIZE) { ALOGD << "Already " << input_frame_infos_.size() << " frames in the queue, dropping" << ". TS: " << (int)(current_timestamp_us_ / 1000) << ". Fps: " << last_set_fps_ << ". Consecutive drops: " << consecutive_full_queue_frame_drops_; current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_; consecutive_full_queue_frame_drops_++; if (consecutive_full_queue_frame_drops_ >= ENCODER_STALL_FRAMEDROP_THRESHOLD) { ALOGE << "Encoder got stuck. Reset."; ResetCodecOnCodecThread(); return WEBRTC_VIDEO_CODEC_ERROR; } frames_dropped_media_encoder_++; OnDroppedFrameOnCodecThread(); return WEBRTC_VIDEO_CODEC_OK; } consecutive_full_queue_frame_drops_ = 0; rtc::scoped_refptr input_buffer( frame.video_frame_buffer()); if (scale_) { // Check framerate before spatial resolution change. quality_scaler_.OnEncodeFrame(frame.width(), frame.height()); const webrtc::QualityScaler::Resolution scaled_resolution = quality_scaler_.GetScaledResolution(); if (scaled_resolution.width != frame.width() || scaled_resolution.height != frame.height()) { if (input_buffer->native_handle() != nullptr) { input_buffer = static_cast(input_buffer.get()) ->CropScaleAndRotate(frame.width(), frame.height(), 0, 0, scaled_resolution.width, scaled_resolution.height, webrtc::kVideoRotation_0); } else { input_buffer = quality_scaler_.GetScaledBuffer(input_buffer); } } } VideoFrame input_frame(input_buffer, frame.timestamp(), frame.render_time_ms(), frame.rotation()); if (!MaybeReconfigureEncoderOnCodecThread(input_frame)) { ALOGE << "Failed to reconfigure encoder."; return WEBRTC_VIDEO_CODEC_ERROR; } const bool key_frame = frame_types->front() != webrtc::kVideoFrameDelta || send_key_frame; bool encode_status = true; if (!input_frame.video_frame_buffer()->native_handle()) { int j_input_buffer_index = jni->CallIntMethod(*j_media_codec_video_encoder_, j_dequeue_input_buffer_method_); CHECK_EXCEPTION(jni); if (j_input_buffer_index == -1) { // Video codec falls behind - no input buffer available. ALOGW << "Encoder drop frame - no input buffers available"; if (frames_received_ > 1) { current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_; frames_dropped_media_encoder_++; OnDroppedFrameOnCodecThread(); } else { // Input buffers are not ready after codec initialization, HW is still // allocating thme - this is expected and should not result in drop // frame report. frames_received_ = 0; } return WEBRTC_VIDEO_CODEC_OK; // TODO(fischman): see webrtc bug 2887. } else if (j_input_buffer_index == -2) { ResetCodecOnCodecThread(); return WEBRTC_VIDEO_CODEC_ERROR; } encode_status = EncodeByteBufferOnCodecThread(jni, key_frame, input_frame, j_input_buffer_index); } else { encode_status = EncodeTextureOnCodecThread(jni, key_frame, input_frame); } if (!encode_status) { ALOGE << "Failed encode frame with timestamp: " << input_frame.timestamp(); ResetCodecOnCodecThread(); return WEBRTC_VIDEO_CODEC_ERROR; } // Save input image timestamps for later output. input_frame_infos_.emplace_back( frame_input_time_ms, input_frame.timestamp(), input_frame.render_time_ms(), input_frame.rotation()); last_input_timestamp_ms_ = current_timestamp_us_ / rtc::kNumMicrosecsPerMillisec; current_timestamp_us_ += rtc::kNumMicrosecsPerSec / last_set_fps_; codec_thread_->Clear(this); codec_thread_->PostDelayed(RTC_FROM_HERE, kMediaCodecPollMs, this); if (!DeliverPendingOutputs(jni)) { ALOGE << "Failed deliver pending outputs."; ResetCodecOnCodecThread(); return WEBRTC_VIDEO_CODEC_ERROR; } return WEBRTC_VIDEO_CODEC_OK; } bool MediaCodecVideoEncoder::MaybeReconfigureEncoderOnCodecThread( const webrtc::VideoFrame& frame) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); const bool is_texture_frame = frame.video_frame_buffer()->native_handle() != nullptr; const bool reconfigure_due_to_format = is_texture_frame != use_surface_; const bool reconfigure_due_to_size = frame.width() != width_ || frame.height() != height_; if (reconfigure_due_to_format) { ALOGD << "Reconfigure encoder due to format change. " << (use_surface_ ? "Reconfiguring to encode from byte buffer." : "Reconfiguring to encode from texture."); LogStatistics(true); } if (reconfigure_due_to_size) { ALOGW << "Reconfigure encoder due to frame resolution change from " << width_ << " x " << height_ << " to " << frame.width() << " x " << frame.height(); LogStatistics(true); width_ = frame.width(); height_ = frame.height(); } if (!reconfigure_due_to_format && !reconfigure_due_to_size) return true; ReleaseOnCodecThread(); return InitEncodeOnCodecThread(width_, height_, 0, 0 , is_texture_frame) == WEBRTC_VIDEO_CODEC_OK; } bool MediaCodecVideoEncoder::EncodeByteBufferOnCodecThread(JNIEnv* jni, bool key_frame, const webrtc::VideoFrame& frame, int input_buffer_index) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); RTC_CHECK(!use_surface_); jobject j_input_buffer = input_buffers_[input_buffer_index]; uint8_t* yuv_buffer = reinterpret_cast(jni->GetDirectBufferAddress(j_input_buffer)); CHECK_EXCEPTION(jni); RTC_CHECK(yuv_buffer) << "Indirect buffer??"; RTC_CHECK(!libyuv::ConvertFromI420( frame.video_frame_buffer()->DataY(), frame.video_frame_buffer()->StrideY(), frame.video_frame_buffer()->DataU(), frame.video_frame_buffer()->StrideU(), frame.video_frame_buffer()->DataV(), frame.video_frame_buffer()->StrideV(), yuv_buffer, width_, width_, height_, encoder_fourcc_)) << "ConvertFromI420 failed"; bool encode_status = jni->CallBooleanMethod(*j_media_codec_video_encoder_, j_encode_buffer_method_, key_frame, input_buffer_index, yuv_size_, current_timestamp_us_); CHECK_EXCEPTION(jni); return encode_status; } bool MediaCodecVideoEncoder::EncodeTextureOnCodecThread(JNIEnv* jni, bool key_frame, const webrtc::VideoFrame& frame) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); RTC_CHECK(use_surface_); NativeHandleImpl* handle = static_cast( frame.video_frame_buffer()->native_handle()); jfloatArray sampling_matrix = handle->sampling_matrix.ToJava(jni); bool encode_status = jni->CallBooleanMethod(*j_media_codec_video_encoder_, j_encode_texture_method_, key_frame, handle->oes_texture_id, sampling_matrix, current_timestamp_us_); CHECK_EXCEPTION(jni); return encode_status; } int32_t MediaCodecVideoEncoder::RegisterEncodeCompleteCallbackOnCodecThread( webrtc::EncodedImageCallback* callback) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); JNIEnv* jni = AttachCurrentThreadIfNeeded(); ScopedLocalRefFrame local_ref_frame(jni); callback_ = callback; return WEBRTC_VIDEO_CODEC_OK; } int32_t MediaCodecVideoEncoder::ReleaseOnCodecThread() { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); if (!inited_) { return WEBRTC_VIDEO_CODEC_OK; } JNIEnv* jni = AttachCurrentThreadIfNeeded(); ALOGD << "EncoderReleaseOnCodecThread: Frames received: " << frames_received_ << ". Encoded: " << frames_encoded_ << ". Dropped: " << frames_dropped_media_encoder_; ScopedLocalRefFrame local_ref_frame(jni); for (size_t i = 0; i < input_buffers_.size(); ++i) jni->DeleteGlobalRef(input_buffers_[i]); input_buffers_.clear(); jni->CallVoidMethod(*j_media_codec_video_encoder_, j_release_method_); CHECK_EXCEPTION(jni); rtc::MessageQueueManager::Clear(this); inited_ = false; use_surface_ = false; ALOGD << "EncoderReleaseOnCodecThread done."; return WEBRTC_VIDEO_CODEC_OK; } int32_t MediaCodecVideoEncoder::SetRatesOnCodecThread(uint32_t new_bit_rate, uint32_t frame_rate) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); frame_rate = (frame_rate < MAX_ALLOWED_VIDEO_FPS) ? frame_rate : MAX_ALLOWED_VIDEO_FPS; if (last_set_bitrate_kbps_ == new_bit_rate && last_set_fps_ == frame_rate) { return WEBRTC_VIDEO_CODEC_OK; } if (scale_) { quality_scaler_.ReportFramerate(frame_rate); } JNIEnv* jni = AttachCurrentThreadIfNeeded(); ScopedLocalRefFrame local_ref_frame(jni); if (new_bit_rate > 0) { last_set_bitrate_kbps_ = new_bit_rate; } if (frame_rate > 0) { last_set_fps_ = frame_rate; } bool ret = jni->CallBooleanMethod(*j_media_codec_video_encoder_, j_set_rates_method_, last_set_bitrate_kbps_, last_set_fps_); CHECK_EXCEPTION(jni); if (!ret) { ResetCodecOnCodecThread(); return WEBRTC_VIDEO_CODEC_ERROR; } return WEBRTC_VIDEO_CODEC_OK; } int MediaCodecVideoEncoder::GetOutputBufferInfoIndex( JNIEnv* jni, jobject j_output_buffer_info) { return GetIntField(jni, j_output_buffer_info, j_info_index_field_); } jobject MediaCodecVideoEncoder::GetOutputBufferInfoBuffer( JNIEnv* jni, jobject j_output_buffer_info) { return GetObjectField(jni, j_output_buffer_info, j_info_buffer_field_); } bool MediaCodecVideoEncoder::GetOutputBufferInfoIsKeyFrame( JNIEnv* jni, jobject j_output_buffer_info) { return GetBooleanField(jni, j_output_buffer_info, j_info_is_key_frame_field_); } jlong MediaCodecVideoEncoder::GetOutputBufferInfoPresentationTimestampUs( JNIEnv* jni, jobject j_output_buffer_info) { return GetLongField( jni, j_output_buffer_info, j_info_presentation_timestamp_us_field_); } bool MediaCodecVideoEncoder::DeliverPendingOutputs(JNIEnv* jni) { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); while (true) { jobject j_output_buffer_info = jni->CallObjectMethod( *j_media_codec_video_encoder_, j_dequeue_output_buffer_method_); CHECK_EXCEPTION(jni); if (IsNull(jni, j_output_buffer_info)) { break; } int output_buffer_index = GetOutputBufferInfoIndex(jni, j_output_buffer_info); if (output_buffer_index == -1) { ResetCodecOnCodecThread(); return false; } // Get key and config frame flags. jobject j_output_buffer = GetOutputBufferInfoBuffer(jni, j_output_buffer_info); bool key_frame = GetOutputBufferInfoIsKeyFrame(jni, j_output_buffer_info); // Get frame timestamps from a queue - for non config frames only. int64_t encoding_start_time_ms = 0; int64_t frame_encoding_time_ms = 0; last_output_timestamp_ms_ = GetOutputBufferInfoPresentationTimestampUs(jni, j_output_buffer_info) / rtc::kNumMicrosecsPerMillisec; if (!input_frame_infos_.empty()) { const InputFrameInfo& frame_info = input_frame_infos_.front(); output_timestamp_ = frame_info.frame_timestamp; output_render_time_ms_ = frame_info.frame_render_time_ms; output_rotation_ = frame_info.rotation; encoding_start_time_ms = frame_info.encode_start_time; input_frame_infos_.pop_front(); } // Extract payload. size_t payload_size = jni->GetDirectBufferCapacity(j_output_buffer); uint8_t* payload = reinterpret_cast( jni->GetDirectBufferAddress(j_output_buffer)); CHECK_EXCEPTION(jni); // Callback - return encoded frame. int32_t callback_status = 0; if (callback_) { std::unique_ptr image( new webrtc::EncodedImage(payload, payload_size, payload_size)); image->_encodedWidth = width_; image->_encodedHeight = height_; image->_timeStamp = output_timestamp_; image->capture_time_ms_ = output_render_time_ms_; image->rotation_ = output_rotation_; image->_frameType = (key_frame ? webrtc::kVideoFrameKey : webrtc::kVideoFrameDelta); image->_completeFrame = true; image->adapt_reason_.quality_resolution_downscales = scale_ ? quality_scaler_.downscale_shift() : -1; webrtc::CodecSpecificInfo info; memset(&info, 0, sizeof(info)); info.codecType = codecType_; if (codecType_ == kVideoCodecVP8) { info.codecSpecific.VP8.pictureId = picture_id_; info.codecSpecific.VP8.nonReference = false; info.codecSpecific.VP8.simulcastIdx = 0; info.codecSpecific.VP8.temporalIdx = webrtc::kNoTemporalIdx; info.codecSpecific.VP8.layerSync = false; info.codecSpecific.VP8.tl0PicIdx = webrtc::kNoTl0PicIdx; info.codecSpecific.VP8.keyIdx = webrtc::kNoKeyIdx; } else if (codecType_ == kVideoCodecVP9) { if (key_frame) { gof_idx_ = 0; } info.codecSpecific.VP9.picture_id = picture_id_; info.codecSpecific.VP9.inter_pic_predicted = key_frame ? false : true; info.codecSpecific.VP9.flexible_mode = false; info.codecSpecific.VP9.ss_data_available = key_frame ? true : false; info.codecSpecific.VP9.tl0_pic_idx = tl0_pic_idx_++; info.codecSpecific.VP9.temporal_idx = webrtc::kNoTemporalIdx; info.codecSpecific.VP9.spatial_idx = webrtc::kNoSpatialIdx; info.codecSpecific.VP9.temporal_up_switch = true; info.codecSpecific.VP9.inter_layer_predicted = false; info.codecSpecific.VP9.gof_idx = static_cast(gof_idx_++ % gof_.num_frames_in_gof); info.codecSpecific.VP9.num_spatial_layers = 1; info.codecSpecific.VP9.spatial_layer_resolution_present = false; if (info.codecSpecific.VP9.ss_data_available) { info.codecSpecific.VP9.spatial_layer_resolution_present = true; info.codecSpecific.VP9.width[0] = width_; info.codecSpecific.VP9.height[0] = height_; info.codecSpecific.VP9.gof.CopyGofInfoVP9(gof_); } } picture_id_ = (picture_id_ + 1) & 0x7FFF; // Generate a header describing a single fragment. webrtc::RTPFragmentationHeader header; memset(&header, 0, sizeof(header)); if (codecType_ == kVideoCodecVP8 || codecType_ == kVideoCodecVP9) { header.VerifyAndAllocateFragmentationHeader(1); header.fragmentationOffset[0] = 0; header.fragmentationLength[0] = image->_length; header.fragmentationPlType[0] = 0; header.fragmentationTimeDiff[0] = 0; if (codecType_ == kVideoCodecVP8 && scale_) { int qp; if (webrtc::vp8::GetQp(payload, payload_size, &qp)) { current_acc_qp_ += qp; quality_scaler_.ReportQP(qp); image->qp_ = qp; } } } else if (codecType_ == kVideoCodecH264) { if (scale_) { h264_bitstream_parser_.ParseBitstream(payload, payload_size); int qp; if (h264_bitstream_parser_.GetLastSliceQp(&qp)) { current_acc_qp_ += qp; quality_scaler_.ReportQP(qp); } } // For H.264 search for start codes. int32_t scPositions[MAX_NALUS_PERFRAME + 1] = {}; int32_t scPositionsLength = 0; int32_t scPosition = 0; while (scPositionsLength < MAX_NALUS_PERFRAME) { int32_t naluPosition = NextNaluPosition( payload + scPosition, payload_size - scPosition); if (naluPosition < 0) { break; } scPosition += naluPosition; scPositions[scPositionsLength++] = scPosition; scPosition += H264_SC_LENGTH; } if (scPositionsLength == 0) { ALOGE << "Start code is not found!"; ALOGE << "Data:" << image->_buffer[0] << " " << image->_buffer[1] << " " << image->_buffer[2] << " " << image->_buffer[3] << " " << image->_buffer[4] << " " << image->_buffer[5]; ResetCodecOnCodecThread(); return false; } scPositions[scPositionsLength] = payload_size; header.VerifyAndAllocateFragmentationHeader(scPositionsLength); for (size_t i = 0; i < scPositionsLength; i++) { header.fragmentationOffset[i] = scPositions[i] + H264_SC_LENGTH; header.fragmentationLength[i] = scPositions[i + 1] - header.fragmentationOffset[i]; header.fragmentationPlType[i] = 0; header.fragmentationTimeDiff[i] = 0; } } callback_status = callback_->Encoded(*image, &info, &header); } // Return output buffer back to the encoder. bool success = jni->CallBooleanMethod(*j_media_codec_video_encoder_, j_release_output_buffer_method_, output_buffer_index); CHECK_EXCEPTION(jni); if (!success) { ResetCodecOnCodecThread(); return false; } // Print per frame statistics. if (encoding_start_time_ms > 0) { frame_encoding_time_ms = rtc::TimeMillis() - encoding_start_time_ms; } if (frames_encoded_ < kMaxEncodedLogFrames) { int current_latency = (int)(last_input_timestamp_ms_ - last_output_timestamp_ms_); ALOGD << "Encoder frame out # " << frames_encoded_ << ". Key: " << key_frame << ". Size: " << payload_size << ". TS: " << (int)last_output_timestamp_ms_ << ". Latency: " << current_latency << ". EncTime: " << frame_encoding_time_ms; } // Calculate and print encoding statistics - every 3 seconds. frames_encoded_++; current_frames_++; current_bytes_ += payload_size; current_encoding_time_ms_ += frame_encoding_time_ms; LogStatistics(false); if (callback_status > 0) { drop_next_input_frame_ = true; // Theoretically could handle callback_status<0 here, but unclear what // that would mean for us. } } return true; } void MediaCodecVideoEncoder::LogStatistics(bool force_log) { int statistic_time_ms = rtc::TimeMillis() - stat_start_time_ms_; if ((statistic_time_ms >= kMediaCodecStatisticsIntervalMs || force_log) && statistic_time_ms > 0) { // Prevent division by zero. int current_frames_divider = current_frames_ != 0 ? current_frames_ : 1; int current_bitrate = current_bytes_ * 8 / statistic_time_ms; int current_fps = (current_frames_ * 1000 + statistic_time_ms / 2) / statistic_time_ms; ALOGD << "Encoded frames: " << frames_encoded_ << ". Bitrate: " << current_bitrate << ", target: " << last_set_bitrate_kbps_ << " kbps" << ", fps: " << current_fps << ", encTime: " << (current_encoding_time_ms_ / current_frames_divider) << ". QP: " << (current_acc_qp_ / current_frames_divider) << " for last " << statistic_time_ms << " ms."; stat_start_time_ms_ = rtc::TimeMillis(); current_frames_ = 0; current_bytes_ = 0; current_acc_qp_ = 0; current_encoding_time_ms_ = 0; } } int32_t MediaCodecVideoEncoder::NextNaluPosition( uint8_t *buffer, size_t buffer_size) { if (buffer_size < H264_SC_LENGTH) { return -1; } uint8_t *head = buffer; // Set end buffer pointer to 4 bytes before actual buffer end so we can // access head[1], head[2] and head[3] in a loop without buffer overrun. uint8_t *end = buffer + buffer_size - H264_SC_LENGTH; while (head < end) { if (head[0]) { head++; continue; } if (head[1]) { // got 00xx head += 2; continue; } if (head[2]) { // got 0000xx head += 3; continue; } if (head[3] != 0x01) { // got 000000xx head++; // xx != 1, continue searching. continue; } return (int32_t)(head - buffer); } return -1; } void MediaCodecVideoEncoder::OnDroppedFrame() { // Methods running on the codec thread should call OnDroppedFrameOnCodecThread // directly. RTC_DCHECK(!codec_thread_checker_.CalledOnValidThread()); codec_thread_->Invoke( RTC_FROM_HERE, Bind(&MediaCodecVideoEncoder::OnDroppedFrameOnCodecThread, this)); } void MediaCodecVideoEncoder::OnDroppedFrameOnCodecThread() { RTC_DCHECK(codec_thread_checker_.CalledOnValidThread()); // Report dropped frame to quality_scaler_. if (scale_) quality_scaler_.ReportDroppedFrame(); } const char* MediaCodecVideoEncoder::ImplementationName() const { return "MediaCodec"; } MediaCodecVideoEncoderFactory::MediaCodecVideoEncoderFactory() : egl_context_(nullptr) { JNIEnv* jni = AttachCurrentThreadIfNeeded(); ScopedLocalRefFrame local_ref_frame(jni); jclass j_encoder_class = FindClass(jni, "org/webrtc/MediaCodecVideoEncoder"); supported_codecs_.clear(); bool is_vp8_hw_supported = jni->CallStaticBooleanMethod( j_encoder_class, GetStaticMethodID(jni, j_encoder_class, "isVp8HwSupported", "()Z")); CHECK_EXCEPTION(jni); if (is_vp8_hw_supported) { ALOGD << "VP8 HW Encoder supported."; supported_codecs_.push_back(VideoCodec(kVideoCodecVP8, "VP8", MAX_VIDEO_WIDTH, MAX_VIDEO_HEIGHT, MAX_VIDEO_FPS)); } bool is_vp9_hw_supported = jni->CallStaticBooleanMethod( j_encoder_class, GetStaticMethodID(jni, j_encoder_class, "isVp9HwSupported", "()Z")); CHECK_EXCEPTION(jni); if (is_vp9_hw_supported) { ALOGD << "VP9 HW Encoder supported."; supported_codecs_.push_back(VideoCodec(kVideoCodecVP9, "VP9", MAX_VIDEO_WIDTH, MAX_VIDEO_HEIGHT, MAX_VIDEO_FPS)); } bool is_h264_hw_supported = jni->CallStaticBooleanMethod( j_encoder_class, GetStaticMethodID(jni, j_encoder_class, "isH264HwSupported", "()Z")); CHECK_EXCEPTION(jni); if (is_h264_hw_supported) { ALOGD << "H.264 HW Encoder supported."; supported_codecs_.push_back(VideoCodec(kVideoCodecH264, "H264", MAX_VIDEO_WIDTH, MAX_VIDEO_HEIGHT, MAX_VIDEO_FPS)); } } MediaCodecVideoEncoderFactory::~MediaCodecVideoEncoderFactory() { ALOGD << "MediaCodecVideoEncoderFactory dtor"; if (egl_context_) { JNIEnv* jni = AttachCurrentThreadIfNeeded(); jni->DeleteGlobalRef(egl_context_); } } void MediaCodecVideoEncoderFactory::SetEGLContext( JNIEnv* jni, jobject egl_context) { ALOGD << "MediaCodecVideoEncoderFactory::SetEGLContext"; if (egl_context_) { jni->DeleteGlobalRef(egl_context_); egl_context_ = nullptr; } egl_context_ = jni->NewGlobalRef(egl_context); if (CheckException(jni)) { ALOGE << "error calling NewGlobalRef for EGL Context."; } } webrtc::VideoEncoder* MediaCodecVideoEncoderFactory::CreateVideoEncoder( VideoCodecType type) { if (supported_codecs_.empty()) { ALOGW << "No HW video encoder for type " << (int)type; return nullptr; } for (std::vector::const_iterator it = supported_codecs_.begin(); it != supported_codecs_.end(); ++it) { if (it->type == type) { ALOGD << "Create HW video encoder for type " << (int)type << " (" << it->name << ")."; return new MediaCodecVideoEncoder(AttachCurrentThreadIfNeeded(), type, egl_context_); } } ALOGW << "Can not find HW video encoder for type " << (int)type; return nullptr; } const std::vector& MediaCodecVideoEncoderFactory::codecs() const { return supported_codecs_; } void MediaCodecVideoEncoderFactory::DestroyVideoEncoder( webrtc::VideoEncoder* encoder) { ALOGD << "Destroy video encoder."; delete encoder; } } // namespace webrtc_jni