/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Modified from the Chromium original: // src/media/base/sinc_resampler_unittest.cc // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include <math.h> #include <memory> #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/timeutils.h" #include "webrtc/common_audio/resampler/sinc_resampler.h" #include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h" #include "webrtc/system_wrappers/include/cpu_features_wrapper.h" #include "webrtc/system_wrappers/include/stringize_macros.h" #include "webrtc/test/test_suite.h" using testing::_; namespace webrtc { static const double kSampleRateRatio = 192000.0 / 44100.0; static const double kKernelInterpolationFactor = 0.5; // Helper class to ensure ChunkedResample() functions properly. class MockSource : public SincResamplerCallback { public: MOCK_METHOD2(Run, void(size_t frames, float* destination)); }; ACTION(ClearBuffer) { memset(arg1, 0, arg0 * sizeof(float)); } ACTION(FillBuffer) { // Value chosen arbitrarily such that SincResampler resamples it to something // easily representable on all platforms; e.g., using kSampleRateRatio this // becomes 1.81219. memset(arg1, 64, arg0 * sizeof(float)); } // Test requesting multiples of ChunkSize() frames results in the proper number // of callbacks. TEST(SincResamplerTest, ChunkedResample) { MockSource mock_source; // Choose a high ratio of input to output samples which will result in quick // exhaustion of SincResampler's internal buffers. SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, &mock_source); static const int kChunks = 2; size_t max_chunk_size = resampler.ChunkSize() * kChunks; std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]); // Verify requesting ChunkSize() frames causes a single callback. EXPECT_CALL(mock_source, Run(_, _)) .Times(1).WillOnce(ClearBuffer()); resampler.Resample(resampler.ChunkSize(), resampled_destination.get()); // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks. testing::Mock::VerifyAndClear(&mock_source); EXPECT_CALL(mock_source, Run(_, _)) .Times(kChunks).WillRepeatedly(ClearBuffer()); resampler.Resample(max_chunk_size, resampled_destination.get()); } // Test flush resets the internal state properly. TEST(SincResamplerTest, Flush) { MockSource mock_source; SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, &mock_source); std::unique_ptr<float[]> resampled_destination( new float[resampler.ChunkSize()]); // Fill the resampler with junk data. EXPECT_CALL(mock_source, Run(_, _)) .Times(1).WillOnce(FillBuffer()); resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); ASSERT_NE(resampled_destination[0], 0); // Flush and request more data, which should all be zeros now. resampler.Flush(); testing::Mock::VerifyAndClear(&mock_source); EXPECT_CALL(mock_source, Run(_, _)) .Times(1).WillOnce(ClearBuffer()); resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i) ASSERT_FLOAT_EQ(resampled_destination[i], 0); } // Test flush resets the internal state properly. TEST(SincResamplerTest, DISABLED_SetRatioBench) { MockSource mock_source; SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, &mock_source); int64_t start = rtc::TimeNanos(); for (int i = 1; i < 10000; ++i) resampler.SetRatio(1.0 / i); double total_time_c_us = (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000); } // Define platform independent function name for Convolve* tests. #if defined(WEBRTC_ARCH_X86_FAMILY) #define CONVOLVE_FUNC Convolve_SSE #elif defined(WEBRTC_ARCH_ARM_V7) #define CONVOLVE_FUNC Convolve_NEON #endif // Ensure various optimized Convolve() methods return the same value. Only run // this test if other optimized methods exist, otherwise the default Convolve() // will be tested by the parameterized SincResampler tests below. #if defined(CONVOLVE_FUNC) TEST(SincResamplerTest, Convolve) { #if defined(WEBRTC_ARCH_X86_FAMILY) ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2)); #elif defined(WEBRTC_ARCH_ARM_V7) ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON); #endif // Initialize a dummy resampler. MockSource mock_source; SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, &mock_source); // The optimized Convolve methods are slightly more precise than Convolve_C(), // so comparison must be done using an epsilon. static const double kEpsilon = 0.00000005; // Use a kernel from SincResampler as input and kernel data, this has the // benefit of already being properly sized and aligned for Convolve_SSE(). double result = resampler.Convolve_C( resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); double result2 = resampler.CONVOLVE_FUNC( resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); EXPECT_NEAR(result2, result, kEpsilon); // Test Convolve() w/ unaligned input pointer. result = resampler.Convolve_C( resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); result2 = resampler.CONVOLVE_FUNC( resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); EXPECT_NEAR(result2, result, kEpsilon); } #endif // Benchmark for the various Convolve() methods. Make sure to build with // branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking. // Original benchmarks were run with --convolve-iterations=50000000. TEST(SincResamplerTest, ConvolveBenchmark) { // Initialize a dummy resampler. MockSource mock_source; SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, &mock_source); // Retrieve benchmark iterations from command line. // TODO(ajm): Reintroduce this as a command line option. const int kConvolveIterations = 1000000; printf("Benchmarking %d iterations:\n", kConvolveIterations); // Benchmark Convolve_C(). int64_t start = rtc::TimeNanos(); for (int i = 0; i < kConvolveIterations; ++i) { resampler.Convolve_C( resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); } double total_time_c_us = (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000); #if defined(CONVOLVE_FUNC) #if defined(WEBRTC_ARCH_X86_FAMILY) ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2)); #elif defined(WEBRTC_ARCH_ARM_V7) ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON); #endif // Benchmark with unaligned input pointer. start = rtc::TimeNanos(); for (int j = 0; j < kConvolveIterations; ++j) { resampler.CONVOLVE_FUNC( resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); } double total_time_optimized_unaligned_us = (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; printf(STRINGIZE(CONVOLVE_FUNC) "(unaligned) took %.2fms; which is %.2fx " "faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000, total_time_c_us / total_time_optimized_unaligned_us); // Benchmark with aligned input pointer. start = rtc::TimeNanos(); for (int j = 0; j < kConvolveIterations; ++j) { resampler.CONVOLVE_FUNC( resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); } double total_time_optimized_aligned_us = (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx " "faster than Convolve_C and %.2fx faster than " STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n", total_time_optimized_aligned_us / 1000, total_time_c_us / total_time_optimized_aligned_us, total_time_optimized_unaligned_us / total_time_optimized_aligned_us); #endif } #undef CONVOLVE_FUNC typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData; class SincResamplerTest : public testing::TestWithParam<SincResamplerTestData> { public: SincResamplerTest() : input_rate_(std::tr1::get<0>(GetParam())), output_rate_(std::tr1::get<1>(GetParam())), rms_error_(std::tr1::get<2>(GetParam())), low_freq_error_(std::tr1::get<3>(GetParam())) { } virtual ~SincResamplerTest() {} protected: int input_rate_; int output_rate_; double rms_error_; double low_freq_error_; }; // Tests resampling using a given input and output sample rate. TEST_P(SincResamplerTest, Resample) { // Make comparisons using one second of data. static const double kTestDurationSecs = 1; const size_t input_samples = static_cast<size_t>(kTestDurationSecs * input_rate_); const size_t output_samples = static_cast<size_t>(kTestDurationSecs * output_rate_); // Nyquist frequency for the input sampling rate. const double input_nyquist_freq = 0.5 * input_rate_; // Source for data to be resampled. SinusoidalLinearChirpSource resampler_source( input_rate_, input_samples, input_nyquist_freq, 0); const double io_ratio = input_rate_ / static_cast<double>(output_rate_); SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize, &resampler_source); // Force an update to the sample rate ratio to ensure dyanmic sample rate // changes are working correctly. std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]); memcpy(kernel.get(), resampler.get_kernel_for_testing(), SincResampler::kKernelStorageSize); resampler.SetRatio(M_PI); ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), SincResampler::kKernelStorageSize)); resampler.SetRatio(io_ratio); ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), SincResampler::kKernelStorageSize)); // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes. std::unique_ptr<float[]> resampled_destination(new float[output_samples]); std::unique_ptr<float[]> pure_destination(new float[output_samples]); // Generate resampled signal. resampler.Resample(output_samples, resampled_destination.get()); // Generate pure signal. SinusoidalLinearChirpSource pure_source( output_rate_, output_samples, input_nyquist_freq, 0); pure_source.Run(output_samples, pure_destination.get()); // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which // we refer to as low and high. static const double kLowFrequencyNyquistRange = 0.7; static const double kHighFrequencyNyquistRange = 0.9; // Calculate Root-Mean-Square-Error and maximum error for the resampling. double sum_of_squares = 0; double low_freq_max_error = 0; double high_freq_max_error = 0; int minimum_rate = std::min(input_rate_, output_rate_); double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate; double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate; for (size_t i = 0; i < output_samples; ++i) { double error = fabs(resampled_destination[i] - pure_destination[i]); if (pure_source.Frequency(i) < low_frequency_range) { if (error > low_freq_max_error) low_freq_max_error = error; } else if (pure_source.Frequency(i) < high_frequency_range) { if (error > high_freq_max_error) high_freq_max_error = error; } // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange. sum_of_squares += error * error; } double rms_error = sqrt(sum_of_squares / output_samples); // Convert each error to dbFS. #define DBFS(x) 20 * log10(x) rms_error = DBFS(rms_error); low_freq_max_error = DBFS(low_freq_max_error); high_freq_max_error = DBFS(high_freq_max_error); EXPECT_LE(rms_error, rms_error_); EXPECT_LE(low_freq_max_error, low_freq_error_); // All conversions currently have a high frequency error around -6 dbFS. static const double kHighFrequencyMaxError = -6.02; EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError); } // Almost all conversions have an RMS error of around -14 dbFS. static const double kResamplingRMSError = -14.58; // Thresholds chosen arbitrarily based on what each resampling reported during // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS. INSTANTIATE_TEST_CASE_P( SincResamplerTest, SincResamplerTest, testing::Values( // To 44.1kHz std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73), std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19), std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54), std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53), std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32), std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53), std::tr1::make_tuple(48000, 44100, -15.01, -64.04), std::tr1::make_tuple(96000, 44100, -18.49, -25.51), std::tr1::make_tuple(192000, 44100, -20.50, -13.31), // To 48kHz std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43), std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61), std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96), std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42), std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04), std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63), std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52), std::tr1::make_tuple(96000, 48000, -18.40, -28.44), std::tr1::make_tuple(192000, 48000, -20.43, -14.11), // To 96kHz std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19), std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61), std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39), std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42), std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95), std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63), std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52), std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52), std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41), // To 192kHz std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10), std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61), std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14), std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42), std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38), std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63), std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44), std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52), std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52))); } // namespace webrtc