/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdint.h> #if defined(WEBRTC_POSIX) #include <sys/time.h> #if defined(WEBRTC_MAC) #include <mach/mach_time.h> #endif #endif #if defined(WEBRTC_WIN) #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include <windows.h> #include <mmsystem.h> #endif #include "webrtc/base/checks.h" #include "webrtc/base/timeutils.h" namespace rtc { ClockInterface* g_clock = nullptr; ClockInterface* SetClockForTesting(ClockInterface* clock) { ClockInterface* prev = g_clock; g_clock = clock; return prev; } uint64_t SystemTimeNanos() { int64_t ticks; #if defined(WEBRTC_MAC) static mach_timebase_info_data_t timebase; if (timebase.denom == 0) { // Get the timebase if this is the first time we run. // Recommended by Apple's QA1398. if (mach_timebase_info(&timebase) != KERN_SUCCESS) { RTC_DCHECK(false); } } // Use timebase to convert absolute time tick units into nanoseconds. ticks = mach_absolute_time() * timebase.numer / timebase.denom; #elif defined(WEBRTC_POSIX) struct timespec ts; // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not // supported? clock_gettime(CLOCK_MONOTONIC, &ts); ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) + static_cast<int64_t>(ts.tv_nsec); #elif defined(WEBRTC_WIN) static volatile LONG last_timegettime = 0; static volatile int64_t num_wrap_timegettime = 0; volatile LONG* last_timegettime_ptr = &last_timegettime; DWORD now = timeGetTime(); // Atomically update the last gotten time DWORD old = InterlockedExchange(last_timegettime_ptr, now); if (now < old) { // If now is earlier than old, there may have been a race between threads. // 0x0fffffff ~3.1 days, the code will not take that long to execute // so it must have been a wrap around. if (old > 0xf0000000 && now < 0x0fffffff) { num_wrap_timegettime++; } } ticks = now + (num_wrap_timegettime << 32); // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're // just wasting a multiply and divide when doing Time() on Windows. ticks = ticks * kNumNanosecsPerMillisec; #else #error Unsupported platform. #endif return ticks; } int64_t SystemTimeMillis() { return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec); } uint64_t TimeNanos() { if (g_clock) { return g_clock->TimeNanos(); } return SystemTimeNanos(); } uint32_t Time32() { return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec); } int64_t TimeMillis() { return static_cast<int64_t>(TimeNanos() / kNumNanosecsPerMillisec); } uint64_t TimeMicros() { return static_cast<uint64_t>(TimeNanos() / kNumNanosecsPerMicrosec); } int64_t TimeAfter(int64_t elapsed) { RTC_DCHECK_GE(elapsed, 0); return TimeMillis() + elapsed; } int32_t TimeDiff32(uint32_t later, uint32_t earlier) { return later - earlier; } int64_t TimeDiff(int64_t later, int64_t earlier) { return later - earlier; } TimestampWrapAroundHandler::TimestampWrapAroundHandler() : last_ts_(0), num_wrap_(-1) {} int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) { if (num_wrap_ == -1) { last_ts_ = ts; num_wrap_ = 0; return ts; } if (ts < last_ts_) { if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff) ++num_wrap_; } else if ((ts - last_ts_) > 0xf0000000) { // Backwards wrap. Unwrap with last wrap count and don't update last_ts_. return ts + ((num_wrap_ - 1) << 32); } last_ts_ = ts; return ts + (num_wrap_ << 32); } int64_t TmToSeconds(const std::tm& tm) { static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; int year = tm.tm_year + 1900; int month = tm.tm_mon; int day = tm.tm_mday - 1; // Make 0-based like the rest. int hour = tm.tm_hour; int min = tm.tm_min; int sec = tm.tm_sec; bool expiry_in_leap_year = (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); if (year < 1970) return -1; if (month < 0 || month > 11) return -1; if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1)) return -1; if (hour < 0 || hour > 23) return -1; if (min < 0 || min > 59) return -1; if (sec < 0 || sec > 59) return -1; day += cumul_mdays[month]; // Add number of leap days between 1970 and the expiration year, inclusive. day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) + (year / 400 - 1970 / 400)); // We will have added one day too much above if expiration is during a leap // year, and expiration is in January or February. if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based. day -= 1; // Combine all variables into seconds from 1970-01-01 00:00 (except |month| // which was accumulated into |day| above). return (((static_cast<int64_t> (year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec; } } // namespace rtc