/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/base/helpers.h" #include <limits> #include <memory> #if defined(FEATURE_ENABLE_SSL) #include "webrtc/base/sslconfig.h" #if defined(SSL_USE_OPENSSL) #include <openssl/rand.h> #else #if defined(WEBRTC_WIN) #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <ntsecapi.h> #endif // WEBRTC_WIN #endif // else #endif // FEATURE_ENABLED_SSL #include "webrtc/base/base64.h" #include "webrtc/base/basictypes.h" #include "webrtc/base/logging.h" #include "webrtc/base/timeutils.h" // Protect against max macro inclusion. #undef max namespace rtc { // Base class for RNG implementations. class RandomGenerator { public: virtual ~RandomGenerator() {} virtual bool Init(const void* seed, size_t len) = 0; virtual bool Generate(void* buf, size_t len) = 0; }; #if defined(SSL_USE_OPENSSL) // The OpenSSL RNG. class SecureRandomGenerator : public RandomGenerator { public: SecureRandomGenerator() {} ~SecureRandomGenerator() override {} bool Init(const void* seed, size_t len) override { return true; } bool Generate(void* buf, size_t len) override { return (RAND_bytes(reinterpret_cast<unsigned char*>(buf), len) > 0); } }; #elif defined(SSL_USE_NSS_RNG) // The NSS RNG. class SecureRandomGenerator : public RandomGenerator { public: SecureRandomGenerator() {} ~SecureRandomGenerator() override {} bool Init(const void* seed, size_t len) override { return true; } bool Generate(void* buf, size_t len) override { return (PK11_GenerateRandom(reinterpret_cast<unsigned char*>(buf), static_cast<int>(len)) == SECSuccess); } }; #else #if defined(WEBRTC_WIN) class SecureRandomGenerator : public RandomGenerator { public: SecureRandomGenerator() : advapi32_(NULL), rtl_gen_random_(NULL) {} ~SecureRandomGenerator() { FreeLibrary(advapi32_); } virtual bool Init(const void* seed, size_t seed_len) { // We don't do any additional seeding on Win32, we just use the CryptoAPI // RNG (which is exposed as a hidden function off of ADVAPI32 so that we // don't need to drag in all of CryptoAPI) if (rtl_gen_random_) { return true; } advapi32_ = LoadLibrary(L"advapi32.dll"); if (!advapi32_) { return false; } rtl_gen_random_ = reinterpret_cast<RtlGenRandomProc>( GetProcAddress(advapi32_, "SystemFunction036")); if (!rtl_gen_random_) { FreeLibrary(advapi32_); return false; } return true; } virtual bool Generate(void* buf, size_t len) { if (!rtl_gen_random_ && !Init(NULL, 0)) { return false; } return (rtl_gen_random_(buf, static_cast<int>(len)) != FALSE); } private: typedef BOOL (WINAPI *RtlGenRandomProc)(PVOID, ULONG); HINSTANCE advapi32_; RtlGenRandomProc rtl_gen_random_; }; #elif !defined(FEATURE_ENABLE_SSL) // No SSL implementation -- use rand() class SecureRandomGenerator : public RandomGenerator { public: virtual bool Init(const void* seed, size_t len) { if (len >= 4) { srand(*reinterpret_cast<const int*>(seed)); } else { srand(*reinterpret_cast<const char*>(seed)); } return true; } virtual bool Generate(void* buf, size_t len) { char* bytes = reinterpret_cast<char*>(buf); for (size_t i = 0; i < len; ++i) { bytes[i] = static_cast<char>(rand()); } return true; } }; #else #error No SSL implementation has been selected! #endif // WEBRTC_WIN #endif // A test random generator, for predictable output. class TestRandomGenerator : public RandomGenerator { public: TestRandomGenerator() : seed_(7) { } ~TestRandomGenerator() override { } bool Init(const void* seed, size_t len) override { return true; } bool Generate(void* buf, size_t len) override { for (size_t i = 0; i < len; ++i) { static_cast<uint8_t*>(buf)[i] = static_cast<uint8_t>(GetRandom()); } return true; } private: int GetRandom() { return ((seed_ = seed_ * 214013L + 2531011L) >> 16) & 0x7fff; } int seed_; }; namespace { // TODO: Use Base64::Base64Table instead. static const char kBase64[64] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/'}; static const char kHex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}; static const char kUuidDigit17[4] = {'8', '9', 'a', 'b'}; // This round about way of creating a global RNG is to safe-guard against // indeterminant static initialization order. std::unique_ptr<RandomGenerator>& GetGlobalRng() { RTC_DEFINE_STATIC_LOCAL(std::unique_ptr<RandomGenerator>, global_rng, (new SecureRandomGenerator())); return global_rng; } RandomGenerator& Rng() { return *GetGlobalRng(); } } // namespace void SetRandomTestMode(bool test) { if (!test) { GetGlobalRng().reset(new SecureRandomGenerator()); } else { GetGlobalRng().reset(new TestRandomGenerator()); } } bool InitRandom(int seed) { return InitRandom(reinterpret_cast<const char*>(&seed), sizeof(seed)); } bool InitRandom(const char* seed, size_t len) { if (!Rng().Init(seed, len)) { LOG(LS_ERROR) << "Failed to init random generator!"; return false; } return true; } std::string CreateRandomString(size_t len) { std::string str; CreateRandomString(len, &str); return str; } bool CreateRandomString(size_t len, const char* table, int table_size, std::string* str) { str->clear(); std::unique_ptr<uint8_t[]> bytes(new uint8_t[len]); if (!Rng().Generate(bytes.get(), len)) { LOG(LS_ERROR) << "Failed to generate random string!"; return false; } str->reserve(len); for (size_t i = 0; i < len; ++i) { str->push_back(table[bytes[i] % table_size]); } return true; } bool CreateRandomString(size_t len, std::string* str) { return CreateRandomString(len, kBase64, 64, str); } bool CreateRandomString(size_t len, const std::string& table, std::string* str) { return CreateRandomString(len, table.c_str(), static_cast<int>(table.size()), str); } // Version 4 UUID is of the form: // xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx // Where 'x' is a hex digit, and 'y' is 8, 9, a or b. std::string CreateRandomUuid() { std::string str; std::unique_ptr<uint8_t[]> bytes(new uint8_t[31]); if (!Rng().Generate(bytes.get(), 31)) { LOG(LS_ERROR) << "Failed to generate random string!"; return str; } str.reserve(36); for (size_t i = 0; i < 8; ++i) { str.push_back(kHex[bytes[i] % 16]); } str.push_back('-'); for (size_t i = 8; i < 12; ++i) { str.push_back(kHex[bytes[i] % 16]); } str.push_back('-'); str.push_back('4'); for (size_t i = 12; i < 15; ++i) { str.push_back(kHex[bytes[i] % 16]); } str.push_back('-'); str.push_back(kUuidDigit17[bytes[15] % 4]); for (size_t i = 16; i < 19; ++i) { str.push_back(kHex[bytes[i] % 16]); } str.push_back('-'); for (size_t i = 19; i < 31; ++i) { str.push_back(kHex[bytes[i] % 16]); } return str; } uint32_t CreateRandomId() { uint32_t id; if (!Rng().Generate(&id, sizeof(id))) { LOG(LS_ERROR) << "Failed to generate random id!"; } return id; } uint64_t CreateRandomId64() { return static_cast<uint64_t>(CreateRandomId()) << 32 | CreateRandomId(); } uint32_t CreateRandomNonZeroId() { uint32_t id; do { id = CreateRandomId(); } while (id == 0); return id; } double CreateRandomDouble() { return CreateRandomId() / (std::numeric_limits<uint32_t>::max() + std::numeric_limits<double>::epsilon()); } } // namespace rtc