/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "webrtc/p2p/base/basicpacketsocketfactory.h" #include "webrtc/p2p/base/relayport.h" #include "webrtc/p2p/base/stunport.h" #include "webrtc/p2p/base/tcpport.h" #include "webrtc/p2p/base/testrelayserver.h" #include "webrtc/p2p/base/teststunserver.h" #include "webrtc/p2p/base/testturnserver.h" #include "webrtc/p2p/base/transport.h" #include "webrtc/p2p/base/turnport.h" #include "webrtc/base/arraysize.h" #include "webrtc/base/buffer.h" #include "webrtc/base/crc32.h" #include "webrtc/base/gunit.h" #include "webrtc/base/helpers.h" #include "webrtc/base/logging.h" #include "webrtc/base/natserver.h" #include "webrtc/base/natsocketfactory.h" #include "webrtc/base/physicalsocketserver.h" #include "webrtc/base/socketaddress.h" #include "webrtc/base/ssladapter.h" #include "webrtc/base/stringutils.h" #include "webrtc/base/thread.h" #include "webrtc/base/virtualsocketserver.h" using rtc::AsyncPacketSocket; using rtc::Buffer; using rtc::ByteBufferReader; using rtc::ByteBufferWriter; using rtc::NATType; using rtc::NAT_OPEN_CONE; using rtc::NAT_ADDR_RESTRICTED; using rtc::NAT_PORT_RESTRICTED; using rtc::NAT_SYMMETRIC; using rtc::PacketSocketFactory; using rtc::Socket; using rtc::SocketAddress; using namespace cricket; static const int kTimeout = 1000; static const SocketAddress kLocalAddr1("192.168.1.2", 0); static const SocketAddress kLocalAddr2("192.168.1.3", 0); static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT); static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT); static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT); static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000); static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001); static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002); static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003); static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004); static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005); static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT); static const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010); static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0); static const RelayCredentials kRelayCredentials("test", "test"); // TODO: Update these when RFC5245 is completely supported. // Magic value of 30 is from RFC3484, for IPv4 addresses. static const uint32_t kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 | 30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT); static const int kTiebreaker1 = 11111; static const int kTiebreaker2 = 22222; static const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; static const int kGturnUserNameLength = 16; static Candidate GetCandidate(Port* port) { assert(port->Candidates().size() >= 1); return port->Candidates()[0]; } static SocketAddress GetAddress(Port* port) { return GetCandidate(port).address(); } static IceMessage* CopyStunMessage(const IceMessage* src) { IceMessage* dst = new IceMessage(); ByteBufferWriter buf; src->Write(&buf); ByteBufferReader read_buf(buf); dst->Read(&read_buf); return dst; } static bool WriteStunMessage(const StunMessage* msg, ByteBufferWriter* buf) { buf->Resize(0); // clear out any existing buffer contents return msg->Write(buf); } // Stub port class for testing STUN generation and processing. class TestPort : public Port { public: TestPort(rtc::Thread* thread, const std::string& type, rtc::PacketSocketFactory* factory, rtc::Network* network, const rtc::IPAddress& ip, uint16_t min_port, uint16_t max_port, const std::string& username_fragment, const std::string& password) : Port(thread, type, factory, network, ip, min_port, max_port, username_fragment, password) {} ~TestPort() {} // Expose GetStunMessage so that we can test it. using cricket::Port::GetStunMessage; // The last StunMessage that was sent on this Port. // TODO: Make these const; requires changes to SendXXXXResponse. Buffer* last_stun_buf() { return last_stun_buf_.get(); } IceMessage* last_stun_msg() { return last_stun_msg_.get(); } int last_stun_error_code() { int code = 0; if (last_stun_msg_) { const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode(); if (error_attr) { code = error_attr->code(); } } return code; } virtual void PrepareAddress() { rtc::SocketAddress addr(ip(), min_port()); AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), ICE_TYPE_PREFERENCE_HOST, 0, true); } virtual bool SupportsProtocol(const std::string& protocol) const { return true; } // Exposed for testing candidate building. void AddCandidateAddress(const rtc::SocketAddress& addr) { AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), type_preference_, 0, false); } void AddCandidateAddress(const rtc::SocketAddress& addr, const rtc::SocketAddress& base_address, const std::string& type, int type_preference, bool final) { AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type, type_preference, 0, final); } virtual Connection* CreateConnection(const Candidate& remote_candidate, CandidateOrigin origin) { Connection* conn = new ProxyConnection(this, 0, remote_candidate); AddOrReplaceConnection(conn); // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute // in STUN binding requests. conn->set_use_candidate_attr(true); return conn; } virtual int SendTo( const void* data, size_t size, const rtc::SocketAddress& addr, const rtc::PacketOptions& options, bool payload) { if (!payload) { IceMessage* msg = new IceMessage; Buffer* buf = new Buffer(static_cast(data), size); ByteBufferReader read_buf(*buf); if (!msg->Read(&read_buf)) { delete msg; delete buf; return -1; } last_stun_buf_.reset(buf); last_stun_msg_.reset(msg); } return static_cast(size); } virtual int SetOption(rtc::Socket::Option opt, int value) { return 0; } virtual int GetOption(rtc::Socket::Option opt, int* value) { return -1; } virtual int GetError() { return 0; } void Reset() { last_stun_buf_.reset(); last_stun_msg_.reset(); } void set_type_preference(int type_preference) { type_preference_ = type_preference; } private: void OnSentPacket(rtc::AsyncPacketSocket* socket, const rtc::SentPacket& sent_packet) { PortInterface::SignalSentPacket(sent_packet); } std::unique_ptr last_stun_buf_; std::unique_ptr last_stun_msg_; int type_preference_ = 0; }; class TestChannel : public sigslot::has_slots<> { public: // Takes ownership of |p1| (but not |p2|). TestChannel(Port* p1) : ice_mode_(ICEMODE_FULL), port_(p1), complete_count_(0), conn_(NULL), remote_request_(), nominated_(false) { port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete); port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress); port_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed); } int complete_count() { return complete_count_; } Connection* conn() { return conn_; } const SocketAddress& remote_address() { return remote_address_; } const std::string remote_fragment() { return remote_frag_; } void Start() { port_->PrepareAddress(); } void CreateConnection(const Candidate& remote_candidate) { conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE); IceMode remote_ice_mode = (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL; conn_->set_remote_ice_mode(remote_ice_mode); conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL); conn_->SignalStateChange.connect( this, &TestChannel::OnConnectionStateChange); conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); conn_->SignalReadyToSend.connect(this, &TestChannel::OnConnectionReadyToSend); connection_ready_to_send_ = false; } void OnConnectionStateChange(Connection* conn) { if (conn->write_state() == Connection::STATE_WRITABLE) { conn->set_use_candidate_attr(true); nominated_ = true; } } void AcceptConnection(const Candidate& remote_candidate) { ASSERT_TRUE(remote_request_.get() != NULL); Candidate c = remote_candidate; c.set_address(remote_address_); conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE); conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); port_->SendBindingResponse(remote_request_.get(), remote_address_); remote_request_.reset(); } void Ping() { Ping(0); } void Ping(int64_t now) { conn_->Ping(now); } void Stop() { if (conn_) { conn_->Destroy(); } } void OnPortComplete(Port* port) { complete_count_++; } void SetIceMode(IceMode ice_mode) { ice_mode_ = ice_mode; } int SendData(const char* data, size_t len) { rtc::PacketOptions options; return conn_->Send(data, len, options); } void OnUnknownAddress(PortInterface* port, const SocketAddress& addr, ProtocolType proto, IceMessage* msg, const std::string& rf, bool /*port_muxed*/) { ASSERT_EQ(port_.get(), port); if (!remote_address_.IsNil()) { ASSERT_EQ(remote_address_, addr); } const cricket::StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY); const cricket::StunByteStringAttribute* mi_attr = msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); const cricket::StunUInt32Attribute* fingerprint_attr = msg->GetUInt32(STUN_ATTR_FINGERPRINT); EXPECT_TRUE(priority_attr != NULL); EXPECT_TRUE(mi_attr != NULL); EXPECT_TRUE(fingerprint_attr != NULL); remote_address_ = addr; remote_request_.reset(CopyStunMessage(msg)); remote_frag_ = rf; } void OnDestroyed(Connection* conn) { ASSERT_EQ(conn_, conn); LOG(INFO) << "OnDestroy connection " << conn << " deleted"; conn_ = NULL; // When the connection is destroyed, also clear these fields so future // connections are possible. remote_request_.reset(); remote_address_.Clear(); } void OnSrcPortDestroyed(PortInterface* port) { Port* destroyed_src = port_.release(); ASSERT_EQ(destroyed_src, port); } Port* port() { return port_.get(); } bool nominated() const { return nominated_; } void set_connection_ready_to_send(bool ready) { connection_ready_to_send_ = ready; } bool connection_ready_to_send() const { return connection_ready_to_send_; } private: // ReadyToSend will only issue after a Connection recovers from EWOULDBLOCK. void OnConnectionReadyToSend(Connection* conn) { ASSERT_EQ(conn, conn_); connection_ready_to_send_ = true; } IceMode ice_mode_; std::unique_ptr port_; int complete_count_; Connection* conn_; SocketAddress remote_address_; std::unique_ptr remote_request_; std::string remote_frag_; bool nominated_; bool connection_ready_to_send_ = false; }; class PortTest : public testing::Test, public sigslot::has_slots<> { public: PortTest() : main_(rtc::Thread::Current()), pss_(new rtc::PhysicalSocketServer), ss_(new rtc::VirtualSocketServer(pss_.get())), ss_scope_(ss_.get()), network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32), socket_factory_(rtc::Thread::Current()), nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()), nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()), nat_socket_factory1_(&nat_factory1_), nat_socket_factory2_(&nat_factory2_), stun_server_(TestStunServer::Create(main_, kStunAddr)), turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr), relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr, kRelayTcpIntAddr, kRelayTcpExtAddr, kRelaySslTcpIntAddr, kRelaySslTcpExtAddr), username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)), password_(rtc::CreateRandomString(ICE_PWD_LENGTH)), role_conflict_(false), destroyed_(false) { network_.AddIP(rtc::IPAddress(INADDR_ANY)); } protected: void TestLocalToLocal() { Port* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateUdpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity("udp", port1, "udp", port2, true, true, true, true); } void TestLocalToStun(NATType ntype) { Port* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); nat_server2_.reset(CreateNatServer(kNatAddr2, ntype)); Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity("udp", port1, StunName(ntype), port2, ntype == NAT_OPEN_CONE, true, ntype != NAT_SYMMETRIC, true); } void TestLocalToRelay(RelayType rtype, ProtocolType proto) { Port* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity("udp", port1, RelayName(rtype, proto), port2, rtype == RELAY_GTURN, true, true, true); } void TestStunToLocal(NATType ntype) { nat_server1_.reset(CreateNatServer(kNatAddr1, ntype)); Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateUdpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity(StunName(ntype), port1, "udp", port2, true, ntype != NAT_SYMMETRIC, true, true); } void TestStunToStun(NATType ntype1, NATType ntype2) { nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1)); Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2)); Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2, ntype2 == NAT_OPEN_CONE, ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC, ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC)); } void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) { nat_server1_.reset(CreateNatServer(kNatAddr1, ntype)); Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2, rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true); } void TestTcpToTcp() { Port* port1 = CreateTcpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateTcpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true); } void TestTcpToRelay(RelayType rtype, ProtocolType proto) { Port* port1 = CreateTcpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity("tcp", port1, RelayName(rtype, proto), port2, rtype == RELAY_GTURN, false, true, true); } void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) { Port* port1 = CreateTcpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2, rtype == RELAY_GTURN, false, true, true); } // helpers for above functions UDPPort* CreateUdpPort(const SocketAddress& addr) { return CreateUdpPort(addr, &socket_factory_); } UDPPort* CreateUdpPort(const SocketAddress& addr, PacketSocketFactory* socket_factory) { return UDPPort::Create(main_, socket_factory, &network_, addr.ipaddr(), 0, 0, username_, password_, std::string(), true); } TCPPort* CreateTcpPort(const SocketAddress& addr) { return CreateTcpPort(addr, &socket_factory_); } TCPPort* CreateTcpPort(const SocketAddress& addr, PacketSocketFactory* socket_factory) { return TCPPort::Create(main_, socket_factory, &network_, addr.ipaddr(), 0, 0, username_, password_, true); } StunPort* CreateStunPort(const SocketAddress& addr, rtc::PacketSocketFactory* factory) { ServerAddresses stun_servers; stun_servers.insert(kStunAddr); return StunPort::Create(main_, factory, &network_, addr.ipaddr(), 0, 0, username_, password_, stun_servers, std::string()); } Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype, ProtocolType int_proto, ProtocolType ext_proto) { if (rtype == RELAY_TURN) { return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto); } else { return CreateGturnPort(addr, int_proto, ext_proto); } } TurnPort* CreateTurnPort(const SocketAddress& addr, PacketSocketFactory* socket_factory, ProtocolType int_proto, ProtocolType ext_proto) { SocketAddress server_addr = int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr; return CreateTurnPort(addr, socket_factory, int_proto, ext_proto, server_addr); } TurnPort* CreateTurnPort(const SocketAddress& addr, PacketSocketFactory* socket_factory, ProtocolType int_proto, ProtocolType ext_proto, const rtc::SocketAddress& server_addr) { return TurnPort::Create(main_, socket_factory, &network_, addr.ipaddr(), 0, 0, username_, password_, ProtocolAddress(server_addr, int_proto), kRelayCredentials, 0, std::string()); } RelayPort* CreateGturnPort(const SocketAddress& addr, ProtocolType int_proto, ProtocolType ext_proto) { RelayPort* port = CreateGturnPort(addr); SocketAddress addrs[] = { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr }; port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto)); return port; } RelayPort* CreateGturnPort(const SocketAddress& addr) { // TODO(pthatcher): Remove GTURN. // Generate a username with length of 16 for Gturn only. std::string username = rtc::CreateRandomString(kGturnUserNameLength); return RelayPort::Create(main_, &socket_factory_, &network_, addr.ipaddr(), 0, 0, username, password_); // TODO: Add an external address for ext_proto, so that the // other side can connect to this port using a non-UDP protocol. } rtc::NATServer* CreateNatServer(const SocketAddress& addr, rtc::NATType type) { return new rtc::NATServer(type, ss_.get(), addr, addr, ss_.get(), addr); } static const char* StunName(NATType type) { switch (type) { case NAT_OPEN_CONE: return "stun(open cone)"; case NAT_ADDR_RESTRICTED: return "stun(addr restricted)"; case NAT_PORT_RESTRICTED: return "stun(port restricted)"; case NAT_SYMMETRIC: return "stun(symmetric)"; default: return "stun(?)"; } } static const char* RelayName(RelayType type, ProtocolType proto) { if (type == RELAY_TURN) { switch (proto) { case PROTO_UDP: return "turn(udp)"; case PROTO_TCP: return "turn(tcp)"; case PROTO_SSLTCP: return "turn(ssltcp)"; default: return "turn(?)"; } } else { switch (proto) { case PROTO_UDP: return "gturn(udp)"; case PROTO_TCP: return "gturn(tcp)"; case PROTO_SSLTCP: return "gturn(ssltcp)"; default: return "gturn(?)"; } } } void SetNetworkType(rtc::AdapterType adapter_type) { network_.set_type(adapter_type); } void TestCrossFamilyPorts(int type); void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2); // This does all the work and then deletes |port1| and |port2|. void TestConnectivity(const char* name1, Port* port1, const char* name2, Port* port2, bool accept, bool same_addr1, bool same_addr2, bool possible); // This connects the provided channels which have already started. |ch1| // should have its Connection created (either through CreateConnection() or // TCP reconnecting mechanism before entering this function. void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) { ASSERT_TRUE(ch1->conn()); EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout); // for TCP connect ch1->Ping(); WAIT(!ch2->remote_address().IsNil(), kTimeout); // Send a ping from dst to src. ch2->AcceptConnection(GetCandidate(ch1->port())); ch2->Ping(); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(), kTimeout); } // This connects and disconnects the provided channels in the same sequence as // TestConnectivity with all options set to |true|. It does not delete either // channel. void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) { // Acquire addresses. ch1->Start(); ch2->Start(); ch1->CreateConnection(GetCandidate(ch2->port())); ConnectStartedChannels(ch1, ch2); // Destroy the connections. ch1->Stop(); ch2->Stop(); } // This disconnects both end's Connection and make sure ch2 ready for new // connection. void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) { TCPConnection* tcp_conn1 = static_cast(ch1->conn()); TCPConnection* tcp_conn2 = static_cast(ch2->conn()); ASSERT_TRUE( ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(), tcp_conn2->socket()->GetLocalAddress())); // Wait for both OnClose are delivered. EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kTimeout); EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kTimeout); // Ensure redundant SignalClose events on TcpConnection won't break tcp // reconnection. Chromium will fire SignalClose for all outstanding IPC // packets during reconnection. tcp_conn1->socket()->SignalClose(tcp_conn1->socket(), 0); tcp_conn2->socket()->SignalClose(tcp_conn2->socket(), 0); // Speed up destroying ch2's connection such that the test is ready to // accept a new connection from ch1 before ch1's connection destroys itself. ch2->conn()->Destroy(); EXPECT_TRUE_WAIT(ch2->conn() == NULL, kTimeout); } void TestTcpReconnect(bool ping_after_disconnected, bool send_after_disconnected) { Port* port1 = CreateTcpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); Port* port2 = CreateTcpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); // Set up channels and ensure both ports will be deleted. TestChannel ch1(port1); TestChannel ch2(port2); EXPECT_EQ(0, ch1.complete_count()); EXPECT_EQ(0, ch2.complete_count()); ch1.Start(); ch2.Start(); ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); // Initial connecting the channel, create connection on channel1. ch1.CreateConnection(GetCandidate(port2)); ConnectStartedChannels(&ch1, &ch2); // Shorten the timeout period. const int kTcpReconnectTimeout = kTimeout; static_cast(ch1.conn()) ->set_reconnection_timeout(kTcpReconnectTimeout); static_cast(ch2.conn()) ->set_reconnection_timeout(kTcpReconnectTimeout); EXPECT_FALSE(ch1.connection_ready_to_send()); EXPECT_FALSE(ch2.connection_ready_to_send()); // Once connected, disconnect them. DisconnectTcpTestChannels(&ch1, &ch2); if (send_after_disconnected || ping_after_disconnected) { if (send_after_disconnected) { // First SendData after disconnect should fail but will trigger // reconnect. EXPECT_EQ(-1, ch1.SendData(data, static_cast(strlen(data)))); } if (ping_after_disconnected) { // Ping should trigger reconnect. ch1.Ping(); } // Wait for channel's outgoing TCPConnection connected. EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // Verify that we could still connect channels. ConnectStartedChannels(&ch1, &ch2); EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), kTcpReconnectTimeout); // Channel2 is the passive one so a new connection is created during // reconnect. This new connection should never have issued EWOULDBLOCK // hence the connection_ready_to_send() should be false. EXPECT_FALSE(ch2.connection_ready_to_send()); } else { EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE); // Since the reconnection never happens, the connections should have been // destroyed after the timeout. EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kTimeout); EXPECT_TRUE(!ch2.conn()); } // Tear down and ensure that goes smoothly. ch1.Stop(); ch2.Stop(); EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout); EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout); } IceMessage* CreateStunMessage(int type) { IceMessage* msg = new IceMessage(); msg->SetType(type); msg->SetTransactionID("TESTTESTTEST"); return msg; } IceMessage* CreateStunMessageWithUsername(int type, const std::string& username) { IceMessage* msg = CreateStunMessage(type); msg->AddAttribute( new StunByteStringAttribute(STUN_ATTR_USERNAME, username)); return msg; } TestPort* CreateTestPort(const rtc::SocketAddress& addr, const std::string& username, const std::string& password) { TestPort* port = new TestPort(main_, "test", &socket_factory_, &network_, addr.ipaddr(), 0, 0, username, password); port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict); return port; } TestPort* CreateTestPort(const rtc::SocketAddress& addr, const std::string& username, const std::string& password, cricket::IceRole role, int tiebreaker) { TestPort* port = CreateTestPort(addr, username, password); port->SetIceRole(role); port->SetIceTiebreaker(tiebreaker); return port; } void OnRoleConflict(PortInterface* port) { role_conflict_ = true; } bool role_conflict() const { return role_conflict_; } void ConnectToSignalDestroyed(PortInterface* port) { port->SignalDestroyed.connect(this, &PortTest::OnDestroyed); } void OnDestroyed(PortInterface* port) { destroyed_ = true; } bool destroyed() const { return destroyed_; } rtc::BasicPacketSocketFactory* nat_socket_factory1() { return &nat_socket_factory1_; } rtc::VirtualSocketServer* vss() { return ss_.get(); } private: rtc::Thread* main_; std::unique_ptr pss_; std::unique_ptr ss_; rtc::SocketServerScope ss_scope_; rtc::Network network_; rtc::BasicPacketSocketFactory socket_factory_; std::unique_ptr nat_server1_; std::unique_ptr nat_server2_; rtc::NATSocketFactory nat_factory1_; rtc::NATSocketFactory nat_factory2_; rtc::BasicPacketSocketFactory nat_socket_factory1_; rtc::BasicPacketSocketFactory nat_socket_factory2_; std::unique_ptr stun_server_; TestTurnServer turn_server_; TestRelayServer relay_server_; std::string username_; std::string password_; bool role_conflict_; bool destroyed_; }; void PortTest::TestConnectivity(const char* name1, Port* port1, const char* name2, Port* port2, bool accept, bool same_addr1, bool same_addr2, bool possible) { LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": "; port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); // Set up channels and ensure both ports will be deleted. TestChannel ch1(port1); TestChannel ch2(port2); EXPECT_EQ(0, ch1.complete_count()); EXPECT_EQ(0, ch2.complete_count()); // Acquire addresses. ch1.Start(); ch2.Start(); ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); // Send a ping from src to dst. This may or may not make it. ch1.CreateConnection(GetCandidate(port2)); ASSERT_TRUE(ch1.conn() != NULL); EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect ch1.Ping(); WAIT(!ch2.remote_address().IsNil(), kTimeout); if (accept) { // We are able to send a ping from src to dst. This is the case when // sending to UDP ports and cone NATs. EXPECT_TRUE(ch1.remote_address().IsNil()); EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment()); // Ensure the ping came from the same address used for src. // This is the case unless the source NAT was symmetric. if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1)); EXPECT_TRUE(same_addr2); // Send a ping from dst to src. ch2.AcceptConnection(GetCandidate(port1)); ASSERT_TRUE(ch2.conn() != NULL); ch2.Ping(); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(), kTimeout); } else { // We can't send a ping from src to dst, so flip it around. This will happen // when the destination NAT is addr/port restricted or symmetric. EXPECT_TRUE(ch1.remote_address().IsNil()); EXPECT_TRUE(ch2.remote_address().IsNil()); // Send a ping from dst to src. Again, this may or may not make it. ch2.CreateConnection(GetCandidate(port1)); ASSERT_TRUE(ch2.conn() != NULL); ch2.Ping(); WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout); if (same_addr1 && same_addr2) { // The new ping got back to the source. EXPECT_TRUE(ch1.conn()->receiving()); EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); // First connection may not be writable if the first ping did not get // through. So we will have to do another. if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) { ch1.Ping(); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), kTimeout); } } else if (!same_addr1 && possible) { // The new ping went to the candidate address, but that address was bad. // This will happen when the source NAT is symmetric. EXPECT_TRUE(ch1.remote_address().IsNil()); EXPECT_TRUE(ch2.remote_address().IsNil()); // However, since we have now sent a ping to the source IP, we should be // able to get a ping from it. This gives us the real source address. ch1.Ping(); EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout); EXPECT_FALSE(ch2.conn()->receiving()); EXPECT_TRUE(ch1.remote_address().IsNil()); // Pick up the actual address and establish the connection. ch2.AcceptConnection(GetCandidate(port1)); ASSERT_TRUE(ch2.conn() != NULL); ch2.Ping(); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(), kTimeout); } else if (!same_addr2 && possible) { // The new ping came in, but from an unexpected address. This will happen // when the destination NAT is symmetric. EXPECT_FALSE(ch1.remote_address().IsNil()); EXPECT_FALSE(ch1.conn()->receiving()); // Update our address and complete the connection. ch1.AcceptConnection(GetCandidate(port2)); ch1.Ping(); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), kTimeout); } else { // (!possible) // There should be s no way for the pings to reach each other. Check it. EXPECT_TRUE(ch1.remote_address().IsNil()); EXPECT_TRUE(ch2.remote_address().IsNil()); ch1.Ping(); WAIT(!ch2.remote_address().IsNil(), kTimeout); EXPECT_TRUE(ch1.remote_address().IsNil()); EXPECT_TRUE(ch2.remote_address().IsNil()); } } // Everything should be good, unless we know the situation is impossible. ASSERT_TRUE(ch1.conn() != NULL); ASSERT_TRUE(ch2.conn() != NULL); if (possible) { EXPECT_TRUE(ch1.conn()->receiving()); EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); EXPECT_TRUE(ch2.conn()->receiving()); EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); } else { EXPECT_FALSE(ch1.conn()->receiving()); EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state()); EXPECT_FALSE(ch2.conn()->receiving()); EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state()); } // Tear down and ensure that goes smoothly. ch1.Stop(); ch2.Stop(); EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout); EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout); } class FakePacketSocketFactory : public rtc::PacketSocketFactory { public: FakePacketSocketFactory() : next_udp_socket_(NULL), next_server_tcp_socket_(NULL), next_client_tcp_socket_(NULL) { } ~FakePacketSocketFactory() override { } AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address, uint16_t min_port, uint16_t max_port) override { EXPECT_TRUE(next_udp_socket_ != NULL); AsyncPacketSocket* result = next_udp_socket_; next_udp_socket_ = NULL; return result; } AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address, uint16_t min_port, uint16_t max_port, int opts) override { EXPECT_TRUE(next_server_tcp_socket_ != NULL); AsyncPacketSocket* result = next_server_tcp_socket_; next_server_tcp_socket_ = NULL; return result; } // TODO: |proxy_info| and |user_agent| should be set // per-factory and not when socket is created. AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address, const SocketAddress& remote_address, const rtc::ProxyInfo& proxy_info, const std::string& user_agent, int opts) override { EXPECT_TRUE(next_client_tcp_socket_ != NULL); AsyncPacketSocket* result = next_client_tcp_socket_; next_client_tcp_socket_ = NULL; return result; } void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) { next_udp_socket_ = next_udp_socket; } void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) { next_server_tcp_socket_ = next_server_tcp_socket; } void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) { next_client_tcp_socket_ = next_client_tcp_socket; } rtc::AsyncResolverInterface* CreateAsyncResolver() override { return NULL; } private: AsyncPacketSocket* next_udp_socket_; AsyncPacketSocket* next_server_tcp_socket_; AsyncPacketSocket* next_client_tcp_socket_; }; class FakeAsyncPacketSocket : public AsyncPacketSocket { public: // Returns current local address. Address may be set to NULL if the // socket is not bound yet (GetState() returns STATE_BINDING). virtual SocketAddress GetLocalAddress() const { return SocketAddress(); } // Returns remote address. Returns zeroes if this is not a client TCP socket. virtual SocketAddress GetRemoteAddress() const { return SocketAddress(); } // Send a packet. virtual int Send(const void *pv, size_t cb, const rtc::PacketOptions& options) { return static_cast(cb); } virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr, const rtc::PacketOptions& options) { return static_cast(cb); } virtual int Close() { return 0; } virtual State GetState() const { return state_; } virtual int GetOption(Socket::Option opt, int* value) { return 0; } virtual int SetOption(Socket::Option opt, int value) { return 0; } virtual int GetError() const { return 0; } virtual void SetError(int error) { } void set_state(State state) { state_ = state; } private: State state_; }; // Local -> XXXX TEST_F(PortTest, TestLocalToLocal) { TestLocalToLocal(); } TEST_F(PortTest, TestLocalToConeNat) { TestLocalToStun(NAT_OPEN_CONE); } TEST_F(PortTest, TestLocalToARNat) { TestLocalToStun(NAT_ADDR_RESTRICTED); } TEST_F(PortTest, TestLocalToPRNat) { TestLocalToStun(NAT_PORT_RESTRICTED); } TEST_F(PortTest, TestLocalToSymNat) { TestLocalToStun(NAT_SYMMETRIC); } // Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316. TEST_F(PortTest, DISABLED_TestLocalToTurn) { TestLocalToRelay(RELAY_TURN, PROTO_UDP); } TEST_F(PortTest, TestLocalToGturn) { TestLocalToRelay(RELAY_GTURN, PROTO_UDP); } TEST_F(PortTest, TestLocalToTcpGturn) { TestLocalToRelay(RELAY_GTURN, PROTO_TCP); } TEST_F(PortTest, TestLocalToSslTcpGturn) { TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP); } // Cone NAT -> XXXX TEST_F(PortTest, TestConeNatToLocal) { TestStunToLocal(NAT_OPEN_CONE); } TEST_F(PortTest, TestConeNatToConeNat) { TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE); } TEST_F(PortTest, TestConeNatToARNat) { TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED); } TEST_F(PortTest, TestConeNatToPRNat) { TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED); } TEST_F(PortTest, TestConeNatToSymNat) { TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC); } TEST_F(PortTest, TestConeNatToTurn) { TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP); } TEST_F(PortTest, TestConeNatToGturn) { TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP); } TEST_F(PortTest, TestConeNatToTcpGturn) { TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP); } // Address-restricted NAT -> XXXX TEST_F(PortTest, TestARNatToLocal) { TestStunToLocal(NAT_ADDR_RESTRICTED); } TEST_F(PortTest, TestARNatToConeNat) { TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE); } TEST_F(PortTest, TestARNatToARNat) { TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED); } TEST_F(PortTest, TestARNatToPRNat) { TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED); } TEST_F(PortTest, TestARNatToSymNat) { TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC); } TEST_F(PortTest, TestARNatToTurn) { TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP); } TEST_F(PortTest, TestARNatToGturn) { TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP); } TEST_F(PortTest, TestARNATNatToTcpGturn) { TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP); } // Port-restricted NAT -> XXXX TEST_F(PortTest, TestPRNatToLocal) { TestStunToLocal(NAT_PORT_RESTRICTED); } TEST_F(PortTest, TestPRNatToConeNat) { TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE); } TEST_F(PortTest, TestPRNatToARNat) { TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED); } TEST_F(PortTest, TestPRNatToPRNat) { TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED); } TEST_F(PortTest, TestPRNatToSymNat) { // Will "fail" TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC); } TEST_F(PortTest, TestPRNatToTurn) { TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP); } TEST_F(PortTest, TestPRNatToGturn) { TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP); } TEST_F(PortTest, TestPRNatToTcpGturn) { TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP); } // Symmetric NAT -> XXXX TEST_F(PortTest, TestSymNatToLocal) { TestStunToLocal(NAT_SYMMETRIC); } TEST_F(PortTest, TestSymNatToConeNat) { TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE); } TEST_F(PortTest, TestSymNatToARNat) { TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED); } TEST_F(PortTest, TestSymNatToPRNat) { // Will "fail" TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED); } TEST_F(PortTest, TestSymNatToSymNat) { // Will "fail" TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC); } TEST_F(PortTest, TestSymNatToTurn) { TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP); } TEST_F(PortTest, TestSymNatToGturn) { TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP); } TEST_F(PortTest, TestSymNatToTcpGturn) { TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP); } // Outbound TCP -> XXXX TEST_F(PortTest, TestTcpToTcp) { TestTcpToTcp(); } TEST_F(PortTest, TestTcpReconnectOnSendPacket) { TestTcpReconnect(false /* ping */, true /* send */); } TEST_F(PortTest, TestTcpReconnectOnPing) { TestTcpReconnect(true /* ping */, false /* send */); } TEST_F(PortTest, TestTcpReconnectTimeout) { TestTcpReconnect(false /* ping */, false /* send */); } // Test when TcpConnection never connects, the OnClose() will be called to // destroy the connection. TEST_F(PortTest, TestTcpNeverConnect) { Port* port1 = CreateTcpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); // Set up a channel and ensure the port will be deleted. TestChannel ch1(port1); EXPECT_EQ(0, ch1.complete_count()); ch1.Start(); ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); std::unique_ptr server( vss()->CreateAsyncSocket(kLocalAddr2.family(), SOCK_STREAM)); // Bind but not listen. EXPECT_EQ(0, server->Bind(kLocalAddr2)); Candidate c = GetCandidate(port1); c.set_address(server->GetLocalAddress()); ch1.CreateConnection(c); EXPECT_TRUE(ch1.conn()); EXPECT_TRUE_WAIT(!ch1.conn(), kTimeout); // for TCP connect } /* TODO: Enable these once testrelayserver can accept external TCP. TEST_F(PortTest, TestTcpToTcpRelay) { TestTcpToRelay(PROTO_TCP); } TEST_F(PortTest, TestTcpToSslTcpRelay) { TestTcpToRelay(PROTO_SSLTCP); } */ // Outbound SSLTCP -> XXXX /* TODO: Enable these once testrelayserver can accept external SSL. TEST_F(PortTest, TestSslTcpToTcpRelay) { TestSslTcpToRelay(PROTO_TCP); } TEST_F(PortTest, TestSslTcpToSslTcpRelay) { TestSslTcpToRelay(PROTO_SSLTCP); } */ // Test that a connection will be dead and deleted if // i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds // since it was created, or // ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT // milliseconds since last receiving. TEST_F(PortTest, TestConnectionDead) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); UDPPort* port2 = CreateUdpPort(kLocalAddr2); TestChannel ch1(port1); TestChannel ch2(port2); // Acquire address. ch1.Start(); ch2.Start(); ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); // Test case that the connection has never received anything. int64_t before_created = rtc::TimeMillis(); ch1.CreateConnection(GetCandidate(port2)); int64_t after_created = rtc::TimeMillis(); Connection* conn = ch1.conn(); ASSERT(conn != nullptr); // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned. conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); rtc::Thread::Current()->ProcessMessages(0); EXPECT_TRUE(ch1.conn() != nullptr); // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned. conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1); conn->Prune(); rtc::Thread::Current()->ProcessMessages(0); EXPECT_TRUE(ch1.conn() != nullptr); // It will be dead after MIN_CONNECTION_LIFETIME and pruned. conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kTimeout); // Test case that the connection has received something. // Create a connection again and receive a ping. ch1.CreateConnection(GetCandidate(port2)); conn = ch1.conn(); ASSERT(conn != nullptr); int64_t before_last_receiving = rtc::TimeMillis(); conn->ReceivedPing(); int64_t after_last_receiving = rtc::TimeMillis(); // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT conn->UpdateState( before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT - 1); rtc::Thread::Current()->ProcessMessages(100); EXPECT_TRUE(ch1.conn() != nullptr); conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1); EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kTimeout); } // This test case verifies standard ICE features in STUN messages. Currently it // verifies Message Integrity attribute in STUN messages and username in STUN // binding request will have colon (":") between remote and local username. TEST_F(PortTest, TestLocalToLocalStandard) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); port1->SetIceTiebreaker(kTiebreaker1); UDPPort* port2 = CreateUdpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); port2->SetIceTiebreaker(kTiebreaker2); // Same parameters as TestLocalToLocal above. TestConnectivity("udp", port1, "udp", port2, true, true, true, true); } // This test is trying to validate a successful and failure scenario in a // loopback test when protocol is RFC5245. For success IceTiebreaker, username // should remain equal to the request generated by the port and role of port // must be in controlling. TEST_F(PortTest, TestLoopbackCal) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); lport->PrepareAddress(); ASSERT_FALSE(lport->Candidates().empty()); Connection* conn = lport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); conn->Ping(0); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); IceMessage* msg = lport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); conn->OnReadPacket(lport->last_stun_buf()->data(), lport->last_stun_buf()->size(), rtc::PacketTime()); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); msg = lport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); // If the tiebreaker value is different from port, we expect a error // response. lport->Reset(); lport->AddCandidateAddress(kLocalAddr2); // Creating a different connection as |conn| is receiving. Connection* conn1 = lport->CreateConnection(lport->Candidates()[1], Port::ORIGIN_MESSAGE); conn1->Ping(0); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); msg = lport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); std::unique_ptr modified_req( CreateStunMessage(STUN_BINDING_REQUEST)); const StunByteStringAttribute* username_attr = msg->GetByteString( STUN_ATTR_USERNAME); modified_req->AddAttribute(new StunByteStringAttribute( STUN_ATTR_USERNAME, username_attr->GetString())); // To make sure we receive error response, adding tiebreaker less than // what's present in request. modified_req->AddAttribute(new StunUInt64Attribute( STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1)); modified_req->AddMessageIntegrity("lpass"); modified_req->AddFingerprint(); lport->Reset(); std::unique_ptr buf(new ByteBufferWriter()); WriteStunMessage(modified_req.get(), buf.get()); conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime()); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); msg = lport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); } // This test verifies role conflict signal is received when there is // conflict in the role. In this case both ports are in controlling and // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower // value of tiebreaker, when it receives ping request from |rport| it will // send role conflict signal. TEST_F(PortTest, TestIceRoleConflict) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); rport->SetIceRole(cricket::ICEROLE_CONTROLLING); rport->SetIceTiebreaker(kTiebreaker2); lport->PrepareAddress(); rport->PrepareAddress(); ASSERT_FALSE(lport->Candidates().empty()); ASSERT_FALSE(rport->Candidates().empty()); Connection* lconn = lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); Connection* rconn = rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); rconn->Ping(0); ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); IceMessage* msg = rport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); // Send rport binding request to lport. lconn->OnReadPacket(rport->last_stun_buf()->data(), rport->last_stun_buf()->size(), rtc::PacketTime()); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); EXPECT_TRUE(role_conflict()); } TEST_F(PortTest, TestTcpNoDelay) { TCPPort* port1 = CreateTcpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); int option_value = -1; int success = port1->GetOption(rtc::Socket::OPT_NODELAY, &option_value); ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0 ASSERT_EQ(1, option_value); delete port1; } TEST_F(PortTest, TestDelayedBindingUdp) { FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); FakePacketSocketFactory socket_factory; socket_factory.set_next_udp_socket(socket); std::unique_ptr port(CreateUdpPort(kLocalAddr1, &socket_factory)); socket->set_state(AsyncPacketSocket::STATE_BINDING); port->PrepareAddress(); EXPECT_EQ(0U, port->Candidates().size()); socket->SignalAddressReady(socket, kLocalAddr2); EXPECT_EQ(1U, port->Candidates().size()); } TEST_F(PortTest, TestDelayedBindingTcp) { FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); FakePacketSocketFactory socket_factory; socket_factory.set_next_server_tcp_socket(socket); std::unique_ptr port(CreateTcpPort(kLocalAddr1, &socket_factory)); socket->set_state(AsyncPacketSocket::STATE_BINDING); port->PrepareAddress(); EXPECT_EQ(0U, port->Candidates().size()); socket->SignalAddressReady(socket, kLocalAddr2); EXPECT_EQ(1U, port->Candidates().size()); } void PortTest::TestCrossFamilyPorts(int type) { FakePacketSocketFactory factory; std::unique_ptr ports[4]; SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0), SocketAddress("192.168.1.4", 0), SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0)}; for (int i = 0; i < 4; i++) { FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); if (type == SOCK_DGRAM) { factory.set_next_udp_socket(socket); ports[i].reset(CreateUdpPort(addresses[i], &factory)); } else if (type == SOCK_STREAM) { factory.set_next_server_tcp_socket(socket); ports[i].reset(CreateTcpPort(addresses[i], &factory)); } socket->set_state(AsyncPacketSocket::STATE_BINDING); socket->SignalAddressReady(socket, addresses[i]); ports[i]->PrepareAddress(); } // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate. if (type == SOCK_STREAM) { FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); factory.set_next_client_tcp_socket(clientsocket); } Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()), Port::ORIGIN_MESSAGE); EXPECT_TRUE(NULL == c); EXPECT_EQ(0U, ports[0]->connections().size()); c = ports[0]->CreateConnection(GetCandidate(ports[1].get()), Port::ORIGIN_MESSAGE); EXPECT_FALSE(NULL == c); EXPECT_EQ(1U, ports[0]->connections().size()); // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate. if (type == SOCK_STREAM) { FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); factory.set_next_client_tcp_socket(clientsocket); } c = ports[2]->CreateConnection(GetCandidate(ports[0].get()), Port::ORIGIN_MESSAGE); EXPECT_TRUE(NULL == c); EXPECT_EQ(0U, ports[2]->connections().size()); c = ports[2]->CreateConnection(GetCandidate(ports[3].get()), Port::ORIGIN_MESSAGE); EXPECT_FALSE(NULL == c); EXPECT_EQ(1U, ports[2]->connections().size()); } TEST_F(PortTest, TestSkipCrossFamilyTcp) { TestCrossFamilyPorts(SOCK_STREAM); } TEST_F(PortTest, TestSkipCrossFamilyUdp) { TestCrossFamilyPorts(SOCK_DGRAM); } void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) { Connection* c = p1->CreateConnection(GetCandidate(p2), Port::ORIGIN_MESSAGE); if (can_connect) { EXPECT_FALSE(NULL == c); EXPECT_EQ(1U, p1->connections().size()); } else { EXPECT_TRUE(NULL == c); EXPECT_EQ(0U, p1->connections().size()); } } TEST_F(PortTest, TestUdpV6CrossTypePorts) { FakePacketSocketFactory factory; std::unique_ptr ports[4]; SocketAddress addresses[4] = {SocketAddress("2001:db8::1", 0), SocketAddress("fe80::1", 0), SocketAddress("fe80::2", 0), SocketAddress("::1", 0)}; for (int i = 0; i < 4; i++) { FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); factory.set_next_udp_socket(socket); ports[i].reset(CreateUdpPort(addresses[i], &factory)); socket->set_state(AsyncPacketSocket::STATE_BINDING); socket->SignalAddressReady(socket, addresses[i]); ports[i]->PrepareAddress(); } Port* standard = ports[0].get(); Port* link_local1 = ports[1].get(); Port* link_local2 = ports[2].get(); Port* localhost = ports[3].get(); ExpectPortsCanConnect(false, link_local1, standard); ExpectPortsCanConnect(false, standard, link_local1); ExpectPortsCanConnect(false, link_local1, localhost); ExpectPortsCanConnect(false, localhost, link_local1); ExpectPortsCanConnect(true, link_local1, link_local2); ExpectPortsCanConnect(true, localhost, standard); ExpectPortsCanConnect(true, standard, localhost); } // This test verifies DSCP value set through SetOption interface can be // get through DefaultDscpValue. TEST_F(PortTest, TestDefaultDscpValue) { int dscp; std::unique_ptr udpport(CreateUdpPort(kLocalAddr1)); EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6)); EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); std::unique_ptr tcpport(CreateTcpPort(kLocalAddr1)); EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF31)); EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); EXPECT_EQ(rtc::DSCP_AF31, dscp); std::unique_ptr stunport( CreateStunPort(kLocalAddr1, nat_socket_factory1())); EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41)); EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); EXPECT_EQ(rtc::DSCP_AF41, dscp); std::unique_ptr turnport1( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); // Socket is created in PrepareAddress. turnport1->PrepareAddress(); EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS7)); EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp)); EXPECT_EQ(rtc::DSCP_CS7, dscp); // This will verify correct value returned without the socket. std::unique_ptr turnport2( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6)); EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp)); EXPECT_EQ(rtc::DSCP_CS6, dscp); } // Test sending STUN messages. TEST_F(PortTest, TestSendStunMessage) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); rport->SetIceRole(cricket::ICEROLE_CONTROLLED); rport->SetIceTiebreaker(kTiebreaker2); // Send a fake ping from lport to rport. lport->PrepareAddress(); rport->PrepareAddress(); ASSERT_FALSE(rport->Candidates().empty()); Connection* lconn = lport->CreateConnection( rport->Candidates()[0], Port::ORIGIN_MESSAGE); Connection* rconn = rport->CreateConnection( lport->Candidates()[0], Port::ORIGIN_MESSAGE); lconn->Ping(0); // Check that it's a proper BINDING-REQUEST. ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); IceMessage* msg = lport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); EXPECT_FALSE(msg->IsLegacy()); const StunByteStringAttribute* username_attr = msg->GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(username_attr != NULL); const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY); ASSERT_TRUE(priority_attr != NULL); EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value()); EXPECT_EQ("rfrag:lfrag", username_attr->GetString()); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( lport->last_stun_buf()->data(), lport->last_stun_buf()->size(), "rpass")); const StunUInt64Attribute* ice_controlling_attr = msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); ASSERT_TRUE(ice_controlling_attr != NULL); EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value()); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); EXPECT_TRUE(StunMessage::ValidateFingerprint( lport->last_stun_buf()->data(), lport->last_stun_buf()->size())); // Request should not include ping count. ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); // Save a copy of the BINDING-REQUEST for use below. std::unique_ptr request(CopyStunMessage(msg)); // Receive the BINDING-REQUEST and respond with BINDING-RESPONSE. rconn->OnReadPacket(lport->last_stun_buf()->data(), lport->last_stun_buf()->size(), rtc::PacketTime()); msg = rport->last_stun_msg(); ASSERT_TRUE(msg != NULL); EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); // Received a BINDING-RESPONSE. lconn->OnReadPacket(rport->last_stun_buf()->data(), rport->last_stun_buf()->size(), rtc::PacketTime()); // Verify the STUN Stats. EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total); EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response); EXPECT_EQ(1U, lconn->stats().recv_ping_responses); EXPECT_EQ(1U, rconn->stats().recv_ping_requests); EXPECT_EQ(1U, rconn->stats().sent_ping_responses); EXPECT_FALSE(msg->IsLegacy()); const StunAddressAttribute* addr_attr = msg->GetAddress( STUN_ATTR_XOR_MAPPED_ADDRESS); ASSERT_TRUE(addr_attr != NULL); EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress()); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( rport->last_stun_buf()->data(), rport->last_stun_buf()->size(), "rpass")); EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); EXPECT_TRUE(StunMessage::ValidateFingerprint( lport->last_stun_buf()->data(), lport->last_stun_buf()->size())); // No USERNAME or PRIORITY in ICE responses. EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); // Response should not include ping count. ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life, // but we can do it here. rport->SendBindingErrorResponse(request.get(), lport->Candidates()[0].address(), STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR); msg = rport->last_stun_msg(); ASSERT_TRUE(msg != NULL); EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); EXPECT_FALSE(msg->IsLegacy()); const StunErrorCodeAttribute* error_attr = msg->GetErrorCode(); ASSERT_TRUE(error_attr != NULL); EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code()); EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason()); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( rport->last_stun_buf()->data(), rport->last_stun_buf()->size(), "rpass")); EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); EXPECT_TRUE(StunMessage::ValidateFingerprint( lport->last_stun_buf()->data(), lport->last_stun_buf()->size())); // No USERNAME with ICE. EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED // and (incremented) RETRANSMIT_COUNT attributes. rport->Reset(); rport->set_send_retransmit_count_attribute(true); rconn->Ping(0); rconn->Ping(0); rconn->Ping(0); ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); msg = rport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); const StunUInt64Attribute* ice_controlled_attr = msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); ASSERT_TRUE(ice_controlled_attr != NULL); EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value()); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); // Request should include ping count. const StunUInt32Attribute* retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); ASSERT_TRUE(retransmit_attr != NULL); EXPECT_EQ(2U, retransmit_attr->value()); // Respond with a BINDING-RESPONSE. request.reset(CopyStunMessage(msg)); lconn->OnReadPacket(rport->last_stun_buf()->data(), rport->last_stun_buf()->size(), rtc::PacketTime()); msg = lport->last_stun_msg(); // Receive the BINDING-RESPONSE. rconn->OnReadPacket(lport->last_stun_buf()->data(), lport->last_stun_buf()->size(), rtc::PacketTime()); // Verify the Stun ping stats. EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total); EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); EXPECT_EQ(1U, rconn->stats().recv_ping_responses); EXPECT_EQ(1U, lconn->stats().sent_ping_responses); EXPECT_EQ(1U, lconn->stats().recv_ping_requests); // Ping after receiver the first response rconn->Ping(0); rconn->Ping(0); EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total); EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); // Response should include same ping count. retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); ASSERT_TRUE(retransmit_attr != NULL); EXPECT_EQ(2U, retransmit_attr->value()); } TEST_F(PortTest, TestUseCandidateAttribute) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); rport->SetIceRole(cricket::ICEROLE_CONTROLLED); rport->SetIceTiebreaker(kTiebreaker2); // Send a fake ping from lport to rport. lport->PrepareAddress(); rport->PrepareAddress(); ASSERT_FALSE(rport->Candidates().empty()); Connection* lconn = lport->CreateConnection( rport->Candidates()[0], Port::ORIGIN_MESSAGE); lconn->Ping(0); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); IceMessage* msg = lport->last_stun_msg(); const StunUInt64Attribute* ice_controlling_attr = msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); ASSERT_TRUE(ice_controlling_attr != NULL); const StunByteStringAttribute* use_candidate_attr = msg->GetByteString( STUN_ATTR_USE_CANDIDATE); ASSERT_TRUE(use_candidate_attr != NULL); } // Tests that when the network type changes, the network cost of the port will // change, the network cost of the local candidates will change. Also tests that // the remote network costs are updated with the stun binding requests. TEST_F(PortTest, TestNetworkCostChange) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); rport->SetIceRole(cricket::ICEROLE_CONTROLLED); rport->SetIceTiebreaker(kTiebreaker2); lport->PrepareAddress(); rport->PrepareAddress(); // Default local port cost is rtc::kNetworkCostUnknown. EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost()); ASSERT_TRUE(!lport->Candidates().empty()); for (const cricket::Candidate& candidate : lport->Candidates()) { EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost()); } // Change the network type to wifi. SetNetworkType(rtc::ADAPTER_TYPE_WIFI); EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost()); for (const cricket::Candidate& candidate : lport->Candidates()) { EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost()); } // Add a connection and then change the network type. Connection* lconn = lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); // Change the network type to cellular. SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost()); for (const cricket::Candidate& candidate : lport->Candidates()) { EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost()); } SetNetworkType(rtc::ADAPTER_TYPE_WIFI); Connection* rconn = rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); lconn->Ping(0); // The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping // contains an attribute of network cost of rtc::kNetworkCostHigh. Once the // message is handled in rconn, The rconn's remote candidate will have cost // rtc::kNetworkCostHigh; EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost()); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); IceMessage* msg = lport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); // Pass the binding request to rport. rconn->OnReadPacket(lport->last_stun_buf()->data(), lport->last_stun_buf()->size(), rtc::PacketTime()); // Wait until rport sends the response and then check the remote network cost. ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost()); } TEST_F(PortTest, TestNetworkInfoAttribute) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); rport->SetIceRole(cricket::ICEROLE_CONTROLLED); rport->SetIceTiebreaker(kTiebreaker2); uint16_t lnetwork_id = 9; lport->Network()->set_id(lnetwork_id); // Send a fake ping from lport to rport. lport->PrepareAddress(); rport->PrepareAddress(); Connection* lconn = lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); lconn->Ping(0); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); IceMessage* msg = lport->last_stun_msg(); const StunUInt32Attribute* network_info_attr = msg->GetUInt32(STUN_ATTR_NETWORK_INFO); ASSERT_TRUE(network_info_attr != NULL); uint32_t network_info = network_info_attr->value(); EXPECT_EQ(lnetwork_id, network_info >> 16); // Default network has unknown type and cost kNetworkCostUnknown. EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF); // Set the network type to be cellular so its cost will be kNetworkCostHigh. // Send a fake ping from rport to lport. SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); uint16_t rnetwork_id = 8; rport->Network()->set_id(rnetwork_id); Connection* rconn = rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); rconn->Ping(0); ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); msg = rport->last_stun_msg(); network_info_attr = msg->GetUInt32(STUN_ATTR_NETWORK_INFO); ASSERT_TRUE(network_info_attr != NULL); network_info = network_info_attr->value(); EXPECT_EQ(rnetwork_id, network_info >> 16); EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF); } // Test handling STUN messages. TEST_F(PortTest, TestHandleStunMessage) { // Our port will act as the "remote" port. std::unique_ptr port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); std::unique_ptr in_msg, out_msg; std::unique_ptr buf(new ByteBufferWriter()); rtc::SocketAddress addr(kLocalAddr1); std::string username; // BINDING-REQUEST from local to remote with valid ICE username, // MESSAGE-INTEGRITY, and FINGERPRINT. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag")); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() != NULL); EXPECT_EQ("lfrag", username); // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT. in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE)); in_msg->AddAttribute( new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() != NULL); EXPECT_EQ("", username); // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT. in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE)); in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR)); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() != NULL); EXPECT_EQ("", username); ASSERT_TRUE(out_msg->GetErrorCode() != NULL); EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code()); EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), out_msg->GetErrorCode()->reason()); } // Tests handling of ICE binding requests with missing or incorrect usernames. TEST_F(PortTest, TestHandleStunMessageBadUsername) { std::unique_ptr port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); std::unique_ptr in_msg, out_msg; std::unique_ptr buf(new ByteBufferWriter()); rtc::SocketAddress addr(kLocalAddr1); std::string username; // BINDING-REQUEST with no username. in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST)); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); // BINDING-REQUEST with empty username. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "")); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); // BINDING-REQUEST with too-short username. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra")); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); // BINDING-REQUEST with reversed username. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfrag:rfrag")); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); // BINDING-REQUEST with garbage username. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "abcd:efgh")); in_msg->AddMessageIntegrity("rpass"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); } // Test handling STUN messages with missing or malformed M-I. TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) { // Our port will act as the "remote" port. std::unique_ptr port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); std::unique_ptr in_msg, out_msg; std::unique_ptr buf(new ByteBufferWriter()); rtc::SocketAddress addr(kLocalAddr1); std::string username; // BINDING-REQUEST from local to remote with valid ICE username and // FINGERPRINT, but no MESSAGE-INTEGRITY. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag")); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); // BINDING-REQUEST from local to remote with valid ICE username and // FINGERPRINT, but invalid MESSAGE-INTEGRITY. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag")); in_msg->AddMessageIntegrity("invalid"); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() == NULL); EXPECT_EQ("", username); EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked // by the Connection, not the Port, since they require the remote username. // Change this test to pass in data via Connection::OnReadPacket instead. } // Test handling STUN messages with missing or malformed FINGERPRINT. TEST_F(PortTest, TestHandleStunMessageBadFingerprint) { // Our port will act as the "remote" port. std::unique_ptr port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); std::unique_ptr in_msg, out_msg; std::unique_ptr buf(new ByteBufferWriter()); rtc::SocketAddress addr(kLocalAddr1); std::string username; // BINDING-REQUEST from local to remote with valid ICE username and // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail. in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag")); in_msg->AddMessageIntegrity("rpass"); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_EQ(0, port->last_stun_error_code()); // Now, add a fingerprint, but munge the message so it's not valid. in_msg->AddFingerprint(); in_msg->SetTransactionID("TESTTESTBADD"); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_EQ(0, port->last_stun_error_code()); // Valid BINDING-RESPONSE, except no FINGERPRINT. in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE)); in_msg->AddAttribute( new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); in_msg->AddMessageIntegrity("rpass"); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_EQ(0, port->last_stun_error_code()); // Now, add a fingerprint, but munge the message so it's not valid. in_msg->AddFingerprint(); in_msg->SetTransactionID("TESTTESTBADD"); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_EQ(0, port->last_stun_error_code()); // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT. in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE)); in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR)); in_msg->AddMessageIntegrity("rpass"); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_EQ(0, port->last_stun_error_code()); // Now, add a fingerprint, but munge the message so it's not valid. in_msg->AddFingerprint(); in_msg->SetTransactionID("TESTTESTBADD"); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_EQ(0, port->last_stun_error_code()); } // Test handling of STUN binding indication messages . STUN binding // indications are allowed only to the connection which is in read mode. TEST_F(PortTest, TestHandleStunBindingIndication) { std::unique_ptr lport( CreateTestPort(kLocalAddr2, "lfrag", "lpass")); lport->SetIceRole(cricket::ICEROLE_CONTROLLING); lport->SetIceTiebreaker(kTiebreaker1); // Verifying encoding and decoding STUN indication message. std::unique_ptr in_msg, out_msg; std::unique_ptr buf(new ByteBufferWriter()); rtc::SocketAddress addr(kLocalAddr1); std::string username; in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION)); in_msg->AddFingerprint(); WriteStunMessage(in_msg.get(), buf.get()); EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, &username)); EXPECT_TRUE(out_msg.get() != NULL); EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION); EXPECT_EQ("", username); // Verify connection can handle STUN indication and updates // last_ping_received. std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); rport->SetIceRole(cricket::ICEROLE_CONTROLLED); rport->SetIceTiebreaker(kTiebreaker2); lport->PrepareAddress(); rport->PrepareAddress(); ASSERT_FALSE(lport->Candidates().empty()); ASSERT_FALSE(rport->Candidates().empty()); Connection* lconn = lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); Connection* rconn = rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); rconn->Ping(0); ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); IceMessage* msg = rport->last_stun_msg(); EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); // Send rport binding request to lport. lconn->OnReadPacket(rport->last_stun_buf()->data(), rport->last_stun_buf()->size(), rtc::PacketTime()); ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); int64_t last_ping_received1 = lconn->last_ping_received(); // Adding a delay of 100ms. rtc::Thread::Current()->ProcessMessages(100); // Pinging lconn using stun indication message. lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime()); int64_t last_ping_received2 = lconn->last_ping_received(); EXPECT_GT(last_ping_received2, last_ping_received1); } TEST_F(PortTest, TestComputeCandidatePriority) { std::unique_ptr port(CreateTestPort(kLocalAddr1, "name", "pass")); port->set_type_preference(90); port->set_component(177); port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234)); port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234)); port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234)); port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234)); port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234)); port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234)); port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234)); port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234)); // These should all be: // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177) uint32_t expected_priority_v4 = 1509957199U; uint32_t expected_priority_v6 = 1509959759U; uint32_t expected_priority_ula = 1509962319U; uint32_t expected_priority_v4mapped = expected_priority_v4; uint32_t expected_priority_v4compat = 1509949775U; uint32_t expected_priority_6to4 = 1509954639U; uint32_t expected_priority_teredo = 1509952079U; uint32_t expected_priority_sitelocal = 1509949775U; uint32_t expected_priority_6bone = 1509949775U; ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority()); ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority()); ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority()); ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority()); ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority()); ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority()); ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority()); ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority()); ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority()); } // In the case of shared socket, one port may be shared by local and stun. // Test that candidates with different types will have different foundation. TEST_F(PortTest, TestFoundation) { std::unique_ptr testport( CreateTestPort(kLocalAddr1, "name", "pass")); testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, LOCAL_PORT_TYPE, cricket::ICE_TYPE_PREFERENCE_HOST, false); testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, STUN_PORT_TYPE, cricket::ICE_TYPE_PREFERENCE_SRFLX, true); EXPECT_NE(testport->Candidates()[0].foundation(), testport->Candidates()[1].foundation()); } // This test verifies the foundation of different types of ICE candidates. TEST_F(PortTest, TestCandidateFoundation) { std::unique_ptr nat_server( CreateNatServer(kNatAddr1, NAT_OPEN_CONE)); std::unique_ptr udpport1(CreateUdpPort(kLocalAddr1)); udpport1->PrepareAddress(); std::unique_ptr udpport2(CreateUdpPort(kLocalAddr1)); udpport2->PrepareAddress(); EXPECT_EQ(udpport1->Candidates()[0].foundation(), udpport2->Candidates()[0].foundation()); std::unique_ptr tcpport1(CreateTcpPort(kLocalAddr1)); tcpport1->PrepareAddress(); std::unique_ptr tcpport2(CreateTcpPort(kLocalAddr1)); tcpport2->PrepareAddress(); EXPECT_EQ(tcpport1->Candidates()[0].foundation(), tcpport2->Candidates()[0].foundation()); std::unique_ptr stunport( CreateStunPort(kLocalAddr1, nat_socket_factory1())); stunport->PrepareAddress(); ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout); EXPECT_NE(tcpport1->Candidates()[0].foundation(), stunport->Candidates()[0].foundation()); EXPECT_NE(tcpport2->Candidates()[0].foundation(), stunport->Candidates()[0].foundation()); EXPECT_NE(udpport1->Candidates()[0].foundation(), stunport->Candidates()[0].foundation()); EXPECT_NE(udpport2->Candidates()[0].foundation(), stunport->Candidates()[0].foundation()); // Verify GTURN candidate foundation. std::unique_ptr relayport(CreateGturnPort(kLocalAddr1)); relayport->AddServerAddress( cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP)); relayport->PrepareAddress(); ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout); EXPECT_NE(udpport1->Candidates()[0].foundation(), relayport->Candidates()[0].foundation()); EXPECT_NE(udpport2->Candidates()[0].foundation(), relayport->Candidates()[0].foundation()); // Verifying TURN candidate foundation. std::unique_ptr turnport1( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); turnport1->PrepareAddress(); ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout); EXPECT_NE(udpport1->Candidates()[0].foundation(), turnport1->Candidates()[0].foundation()); EXPECT_NE(udpport2->Candidates()[0].foundation(), turnport1->Candidates()[0].foundation()); EXPECT_NE(stunport->Candidates()[0].foundation(), turnport1->Candidates()[0].foundation()); std::unique_ptr turnport2( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); turnport2->PrepareAddress(); ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout); EXPECT_EQ(turnport1->Candidates()[0].foundation(), turnport2->Candidates()[0].foundation()); // Running a second turn server, to get different base IP address. SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT); SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0); TestTurnServer turn_server2( rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2); std::unique_ptr turnport3( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP, kTurnUdpIntAddr2)); turnport3->PrepareAddress(); ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout); EXPECT_NE(turnport3->Candidates()[0].foundation(), turnport2->Candidates()[0].foundation()); // Start a TCP turn server, and check that two turn candidates have // different foundations if their relay protocols are different. TestTurnServer turn_server3(rtc::Thread::Current(), kTurnTcpIntAddr, kTurnUdpExtAddr, PROTO_TCP); std::unique_ptr turnport4( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP)); turnport4->PrepareAddress(); ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kTimeout); EXPECT_NE(turnport2->Candidates()[0].foundation(), turnport4->Candidates()[0].foundation()); } // This test verifies the related addresses of different types of // ICE candiates. TEST_F(PortTest, TestCandidateRelatedAddress) { std::unique_ptr nat_server( CreateNatServer(kNatAddr1, NAT_OPEN_CONE)); std::unique_ptr udpport(CreateUdpPort(kLocalAddr1)); udpport->PrepareAddress(); // For UDPPort, related address will be empty. EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil()); // Testing related address for stun candidates. // For stun candidate related address must be equal to the base // socket address. std::unique_ptr stunport( CreateStunPort(kLocalAddr1, nat_socket_factory1())); stunport->PrepareAddress(); ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout); // Check STUN candidate address. EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), kNatAddr1.ipaddr()); // Check STUN candidate related address. EXPECT_EQ(stunport->Candidates()[0].related_address(), stunport->GetLocalAddress()); // Verifying the related address for the GTURN candidates. // NOTE: In case of GTURN related address will be equal to the mapped // address, but address(mapped) will not be XOR. std::unique_ptr relayport(CreateGturnPort(kLocalAddr1)); relayport->AddServerAddress( cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP)); relayport->PrepareAddress(); ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout); // For Gturn related address is set to "0.0.0.0:0" EXPECT_EQ(rtc::SocketAddress(), relayport->Candidates()[0].related_address()); // Verifying the related address for TURN candidate. // For TURN related address must be equal to the mapped address. std::unique_ptr turnport( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); turnport->PrepareAddress(); ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout); EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), turnport->Candidates()[0].address().ipaddr()); EXPECT_EQ(kNatAddr1.ipaddr(), turnport->Candidates()[0].related_address().ipaddr()); } // Test priority value overflow handling when preference is set to 3. TEST_F(PortTest, TestCandidatePriority) { cricket::Candidate cand1; cand1.set_priority(3); cricket::Candidate cand2; cand2.set_priority(1); EXPECT_TRUE(cand1.priority() > cand2.priority()); } // Test the Connection priority is calculated correctly. TEST_F(PortTest, TestConnectionPriority) { std::unique_ptr lport( CreateTestPort(kLocalAddr1, "lfrag", "lpass")); lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST); std::unique_ptr rport( CreateTestPort(kLocalAddr2, "rfrag", "rpass")); rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY); lport->set_component(123); lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); rport->set_component(23); rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234)); EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority()); EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority()); // RFC 5245 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) lport->SetIceRole(cricket::ICEROLE_CONTROLLING); rport->SetIceRole(cricket::ICEROLE_CONTROLLED); Connection* lconn = lport->CreateConnection( rport->Candidates()[0], Port::ORIGIN_MESSAGE); #if defined(WEBRTC_WIN) EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority()); #else EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority()); #endif lport->SetIceRole(cricket::ICEROLE_CONTROLLED); rport->SetIceRole(cricket::ICEROLE_CONTROLLING); Connection* rconn = rport->CreateConnection( lport->Candidates()[0], Port::ORIGIN_MESSAGE); #if defined(WEBRTC_WIN) EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority()); #else EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority()); #endif } TEST_F(PortTest, TestWritableState) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); UDPPort* port2 = CreateUdpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); // Set up channels. TestChannel ch1(port1); TestChannel ch2(port2); // Acquire addresses. ch1.Start(); ch2.Start(); ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); // Send a ping from src to dst. ch1.CreateConnection(GetCandidate(port2)); ASSERT_TRUE(ch1.conn() != NULL); EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect ch1.Ping(); WAIT(!ch2.remote_address().IsNil(), kTimeout); // Data should be unsendable until the connection is accepted. char data[] = "abcd"; int data_size = arraysize(data); rtc::PacketOptions options; EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options)); // Accept the connection to return the binding response, transition to // writable, and allow data to be sent. ch2.AcceptConnection(GetCandidate(port1)); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), kTimeout); EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); // Ask the connection to update state as if enough time has passed to lose // full writability and 5 pings went unresponded to. We'll accomplish the // latter by sending pings but not pumping messages. for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { ch1.Ping(i); } int unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500; ch1.conn()->UpdateState(unreliable_timeout_delay); EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state()); // Data should be able to be sent in this state. EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); // And now allow the other side to process the pings and send binding // responses. EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), kTimeout); // Wait long enough for a full timeout (past however long we've already // waited). for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { ch1.Ping(unreliable_timeout_delay + i); } ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT + 500u); EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); // Now that the connection has completely timed out, data send should fail. EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options)); ch1.Stop(); ch2.Stop(); } TEST_F(PortTest, TestTimeoutForNeverWritable) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); UDPPort* port2 = CreateUdpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); // Set up channels. TestChannel ch1(port1); TestChannel ch2(port2); // Acquire addresses. ch1.Start(); ch2.Start(); ch1.CreateConnection(GetCandidate(port2)); ASSERT_TRUE(ch1.conn() != NULL); EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); // Attempt to go directly to write timeout. for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { ch1.Ping(i); } ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u); EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); } // This test verifies the connection setup between ICEMODE_FULL // and ICEMODE_LITE. // In this test |ch1| behaves like FULL mode client and we have created // port which responds to the ping message just like LITE client. TEST_F(PortTest, TestIceLiteConnectivity) { TestPort* ice_full_port = CreateTestPort( kLocalAddr1, "lfrag", "lpass", cricket::ICEROLE_CONTROLLING, kTiebreaker1); std::unique_ptr ice_lite_port( CreateTestPort(kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED, kTiebreaker2)); // Setup TestChannel. This behaves like FULL mode client. TestChannel ch1(ice_full_port); ch1.SetIceMode(ICEMODE_FULL); // Start gathering candidates. ch1.Start(); ice_lite_port->PrepareAddress(); ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); ASSERT_FALSE(ice_lite_port->Candidates().empty()); ch1.CreateConnection(GetCandidate(ice_lite_port.get())); ASSERT_TRUE(ch1.conn() != NULL); EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); // Send ping from full mode client. // This ping must not have USE_CANDIDATE_ATTR. ch1.Ping(); // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly // from port. ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000); IceMessage* msg = ice_full_port->last_stun_msg(); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); // Respond with a BINDING-RESPONSE from litemode client. // NOTE: Ideally we should't create connection at this stage from lite // port, as it should be done only after receiving ping with USE_CANDIDATE. // But we need a connection to send a response message. ice_lite_port->CreateConnection( ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE); std::unique_ptr request(CopyStunMessage(msg)); ice_lite_port->SendBindingResponse( request.get(), ice_full_port->Candidates()[0].address()); // Feeding the respone message from litemode to the full mode connection. ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data(), ice_lite_port->last_stun_buf()->size(), rtc::PacketTime()); // Verifying full mode connection becomes writable from the response. EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), kTimeout); EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout); // Clear existing stun messsages. Otherwise we will process old stun // message right after we send ping. ice_full_port->Reset(); // Send ping. This must have USE_CANDIDATE_ATTR. ch1.Ping(); ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000); msg = ice_full_port->last_stun_msg(); EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); ch1.Stop(); } // This test case verifies that the CONTROLLING port does not time out. TEST_F(PortTest, TestControllingNoTimeout) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); ConnectToSignalDestroyed(port1); port1->set_timeout_delay(10); // milliseconds port1->SetIceRole(cricket::ICEROLE_CONTROLLING); port1->SetIceTiebreaker(kTiebreaker1); UDPPort* port2 = CreateUdpPort(kLocalAddr2); port2->SetIceRole(cricket::ICEROLE_CONTROLLED); port2->SetIceTiebreaker(kTiebreaker2); // Set up channels and ensure both ports will be deleted. TestChannel ch1(port1); TestChannel ch2(port2); // Simulate a connection that succeeds, and then is destroyed. StartConnectAndStopChannels(&ch1, &ch2); // After the connection is destroyed, the port should not be destroyed. rtc::Thread::Current()->ProcessMessages(kTimeout); EXPECT_FALSE(destroyed()); } // This test case verifies that the CONTROLLED port does time out, but only // after connectivity is lost. TEST_F(PortTest, TestControlledTimeout) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); port1->SetIceTiebreaker(kTiebreaker1); UDPPort* port2 = CreateUdpPort(kLocalAddr2); ConnectToSignalDestroyed(port2); port2->set_timeout_delay(10); // milliseconds port2->SetIceRole(cricket::ICEROLE_CONTROLLED); port2->SetIceTiebreaker(kTiebreaker2); // The connection must not be destroyed before a connection is attempted. EXPECT_FALSE(destroyed()); port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); // Set up channels and ensure both ports will be deleted. TestChannel ch1(port1); TestChannel ch2(port2); // Simulate a connection that succeeds, and then is destroyed. StartConnectAndStopChannels(&ch1, &ch2); // The controlled port should be destroyed after 10 milliseconds. EXPECT_TRUE_WAIT(destroyed(), kTimeout); } // This test case verifies that if the role of a port changes from controlled // to controlling after all connections fail, the port will not be destroyed. TEST_F(PortTest, TestControlledToControllingNotDestroyed) { UDPPort* port1 = CreateUdpPort(kLocalAddr1); port1->SetIceRole(cricket::ICEROLE_CONTROLLING); port1->SetIceTiebreaker(kTiebreaker1); UDPPort* port2 = CreateUdpPort(kLocalAddr2); ConnectToSignalDestroyed(port2); port2->set_timeout_delay(10); // milliseconds port2->SetIceRole(cricket::ICEROLE_CONTROLLED); port2->SetIceTiebreaker(kTiebreaker2); // The connection must not be destroyed before a connection is attempted. EXPECT_FALSE(destroyed()); port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); // Set up channels and ensure both ports will be deleted. TestChannel ch1(port1); TestChannel ch2(port2); // Simulate a connection that succeeds, and then is destroyed. StartConnectAndStopChannels(&ch1, &ch2); // Switch the role after all connections are destroyed. EXPECT_TRUE_WAIT(ch2.conn() == nullptr, kTimeout); port1->SetIceRole(cricket::ICEROLE_CONTROLLED); port2->SetIceRole(cricket::ICEROLE_CONTROLLING); // After the connection is destroyed, the port should not be destroyed. rtc::Thread::Current()->ProcessMessages(kTimeout); EXPECT_FALSE(destroyed()); } TEST_F(PortTest, TestSupportsProtocol) { std::unique_ptr udp_port(CreateUdpPort(kLocalAddr1)); EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); std::unique_ptr stun_port( CreateStunPort(kLocalAddr1, nat_socket_factory1())); EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME)); EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME)); std::unique_ptr tcp_port(CreateTcpPort(kLocalAddr1)); EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME)); EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); std::unique_ptr turn_port( CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME)); EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME)); } // Test that SetIceParameters updates the component, ufrag and password // on both the port itself and its candidates. TEST_F(PortTest, TestSetIceParameters) { std::unique_ptr port( CreateTestPort(kLocalAddr1, "ufrag1", "password1")); port->PrepareAddress(); EXPECT_EQ(1UL, port->Candidates().size()); port->SetIceParameters(1, "ufrag2", "password2"); EXPECT_EQ(1, port->component()); EXPECT_EQ("ufrag2", port->username_fragment()); EXPECT_EQ("password2", port->password()); const Candidate& candidate = port->Candidates()[0]; EXPECT_EQ(1, candidate.component()); EXPECT_EQ("ufrag2", candidate.username()); EXPECT_EQ("password2", candidate.password()); } TEST_F(PortTest, TestAddConnectionWithSameAddress) { std::unique_ptr port( CreateTestPort(kLocalAddr1, "ufrag1", "password1")); port->PrepareAddress(); EXPECT_EQ(1u, port->Candidates().size()); rtc::SocketAddress address("1.1.1.1", 5000); cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, ""); cricket::Connection* conn1 = port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); cricket::Connection* conn_in_use = port->GetConnection(address); EXPECT_EQ(conn1, conn_in_use); EXPECT_EQ(0u, conn_in_use->remote_candidate().generation()); // Creating with a candidate with the same address again will get us a // different connection with the new candidate. candidate.set_generation(2); cricket::Connection* conn2 = port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); EXPECT_NE(conn1, conn2); conn_in_use = port->GetConnection(address); EXPECT_EQ(conn2, conn_in_use); EXPECT_EQ(2u, conn_in_use->remote_candidate().generation()); // Make sure the new connection was not deleted. rtc::Thread::Current()->ProcessMessages(300); EXPECT_TRUE(port->GetConnection(address) != nullptr); }