/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "webrtc/video/overuse_frame_detector.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/system_wrappers/include/clock.h" #include "webrtc/video_frame.h" namespace webrtc { namespace { const int kWidth = 640; const int kHeight = 480; const int kFrameInterval33ms = 33; const int kProcessIntervalMs = 5000; const int kProcessTime5ms = 5; } // namespace class MockCpuOveruseObserver : public CpuOveruseObserver { public: MockCpuOveruseObserver() {} virtual ~MockCpuOveruseObserver() {} MOCK_METHOD0(OveruseDetected, void()); MOCK_METHOD0(NormalUsage, void()); }; class CpuOveruseObserverImpl : public CpuOveruseObserver { public: CpuOveruseObserverImpl() : overuse_(0), normaluse_(0) {} virtual ~CpuOveruseObserverImpl() {} void OveruseDetected() { ++overuse_; } void NormalUsage() { ++normaluse_; } int overuse_; int normaluse_; }; class OveruseFrameDetectorTest : public ::testing::Test, public CpuOveruseMetricsObserver { protected: void SetUp() override { clock_.reset(new SimulatedClock(1234)); observer_.reset(new MockCpuOveruseObserver()); options_.min_process_count = 0; ReinitializeOveruseDetector(); } void ReinitializeOveruseDetector() { overuse_detector_.reset(new OveruseFrameDetector( clock_.get(), options_, observer_.get(), nullptr, this)); } void OnEncodedFrameTimeMeasured(int encode_time_ms, const CpuOveruseMetrics& metrics) override { metrics_ = metrics; } int InitialUsage() { return ((options_.low_encode_usage_threshold_percent + options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5; } void InsertAndSendFramesWithInterval(int num_frames, int interval_ms, int width, int height, int delay_ms) { VideoFrame frame; frame.CreateEmptyFrame(width, height, width, width / 2, width / 2); uint32_t timestamp = 0; while (num_frames-- > 0) { frame.set_timestamp(timestamp); overuse_detector_->FrameCaptured(frame); clock_->AdvanceTimeMilliseconds(delay_ms); overuse_detector_->FrameSent(timestamp); clock_->AdvanceTimeMilliseconds(interval_ms - delay_ms); timestamp += interval_ms * 90; } } void ForceUpdate(int width, int height) { // Insert one frame, wait a second and then put in another to force update // the usage. From the tests where these are used, adding another sample // doesn't affect the expected outcome (this is mainly to check initial // values and whether the overuse detector has been reset or not). InsertAndSendFramesWithInterval(2, 1000, width, height, kFrameInterval33ms); } void TriggerOveruse(int num_times) { const int kDelayMs = 32; for (int i = 0; i < num_times; ++i) { InsertAndSendFramesWithInterval( 1000, kFrameInterval33ms, kWidth, kHeight, kDelayMs); overuse_detector_->Process(); } } void TriggerUnderuse() { const int kDelayMs1 = 5; const int kDelayMs2 = 6; InsertAndSendFramesWithInterval( 1300, kFrameInterval33ms, kWidth, kHeight, kDelayMs1); InsertAndSendFramesWithInterval( 1, kFrameInterval33ms, kWidth, kHeight, kDelayMs2); overuse_detector_->Process(); } int UsagePercent() { return metrics_.encode_usage_percent; } CpuOveruseOptions options_; std::unique_ptr clock_; std::unique_ptr observer_; std::unique_ptr overuse_detector_; CpuOveruseMetrics metrics_; }; // UsagePercent() > high_encode_usage_threshold_percent => overuse. // UsagePercent() < low_encode_usage_threshold_percent => underuse. TEST_F(OveruseFrameDetectorTest, TriggerOveruse) { // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) { // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) { overuse_detector_.reset( new OveruseFrameDetector(clock_.get(), options_, nullptr, nullptr, this)); EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(2); TriggerOveruse(options_.high_threshold_consecutive_count); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) { options_.min_process_count = 1; CpuOveruseObserverImpl overuse_observer; overuse_detector_.reset(new OveruseFrameDetector( clock_.get(), options_, &overuse_observer, nullptr, this)); InsertAndSendFramesWithInterval( 1200, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); overuse_detector_->Process(); EXPECT_EQ(0, overuse_observer.normaluse_); clock_->AdvanceTimeMilliseconds(kProcessIntervalMs); overuse_detector_->Process(); EXPECT_EQ(1, overuse_observer.normaluse_); } TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) { EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(64); for (size_t i = 0; i < 64; ++i) { TriggerOveruse(options_.high_threshold_consecutive_count); } } TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); options_.high_threshold_consecutive_count = 2; ReinitializeOveruseDetector(); TriggerOveruse(2); } TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); options_.high_threshold_consecutive_count = 2; ReinitializeOveruseDetector(); TriggerOveruse(1); } TEST_F(OveruseFrameDetectorTest, ProcessingUsage) { InsertAndSendFramesWithInterval( 1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); EXPECT_EQ(kProcessTime5ms * 100 / kFrameInterval33ms, UsagePercent()); } TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) { ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval( 1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); EXPECT_NE(InitialUsage(), UsagePercent()); // Verify reset (with new width/height). ForceUpdate(kWidth, kHeight + 1); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) { ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval( 1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); EXPECT_NE(InitialUsage(), UsagePercent()); InsertAndSendFramesWithInterval( 2, options_.frame_timeout_interval_ms, kWidth, kHeight, kProcessTime5ms); EXPECT_NE(InitialUsage(), UsagePercent()); // Verify reset. InsertAndSendFramesWithInterval( 2, options_.frame_timeout_interval_ms + 1, kWidth, kHeight, kProcessTime5ms); ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) { options_.min_frame_samples = 40; ReinitializeOveruseDetector(); InsertAndSendFramesWithInterval( 40, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); EXPECT_EQ(InitialUsage(), UsagePercent()); // Pass time far enough to digest all previous samples. clock_->AdvanceTimeMilliseconds(1000); InsertAndSendFramesWithInterval(1, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); // The last sample has not been processed here. EXPECT_EQ(InitialUsage(), UsagePercent()); // Pass time far enough to digest all previous samples, 41 in total. clock_->AdvanceTimeMilliseconds(1000); InsertAndSendFramesWithInterval( 1, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms); EXPECT_NE(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) { ForceUpdate(kWidth, kHeight); EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(testing::AtLeast(1)); static const int kIntervalMs = 33; static const size_t kNumFramesEncodingDelay = 3; VideoFrame frame; frame.CreateEmptyFrame(kWidth, kHeight, kWidth, kWidth / 2, kWidth / 2); for (size_t i = 0; i < 1000; ++i) { // Unique timestamps. frame.set_timestamp(static_cast(i)); overuse_detector_->FrameCaptured(frame); clock_->AdvanceTimeMilliseconds(kIntervalMs); if (i > kNumFramesEncodingDelay) { overuse_detector_->FrameSent( static_cast(i - kNumFramesEncodingDelay)); } overuse_detector_->Process(); } } TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) { // >85% encoding time should trigger overuse. EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(testing::AtLeast(1)); static const int kIntervalMs = 33; static const int kDelayMs = 30; VideoFrame frame; frame.CreateEmptyFrame(kWidth, kHeight, kWidth, kWidth / 2, kWidth / 2); uint32_t timestamp = 0; for (size_t i = 0; i < 1000; ++i) { frame.set_timestamp(timestamp); overuse_detector_->FrameCaptured(frame); // Encode and send first parts almost instantly. clock_->AdvanceTimeMilliseconds(1); overuse_detector_->FrameSent(timestamp); // Encode heavier part, resulting in >85% usage total. clock_->AdvanceTimeMilliseconds(kDelayMs - 1); overuse_detector_->FrameSent(timestamp); clock_->AdvanceTimeMilliseconds(kIntervalMs - kDelayMs); timestamp += kIntervalMs * 90; overuse_detector_->Process(); } } } // namespace webrtc