/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/bind.h" #include "webrtc/test/fake_texture_frame.h" #include "webrtc/test/frame_utils.h" #include "webrtc/video_frame.h" namespace webrtc { namespace { int ExpectedSize(int plane_stride, int image_height, PlaneType type) { if (type == kYPlane) return plane_stride * image_height; return plane_stride * ((image_height + 1) / 2); } rtc::scoped_refptr CreateGradient(int width, int height) { rtc::scoped_refptr buffer( I420Buffer::Create(width, height)); // Initialize with gradient, Y = 128(x/w + y/h), U = 256 x/w, V = 256 y/h for (int x = 0; x < width; x++) { for (int y = 0; y < height; y++) { buffer->MutableDataY()[x + y * width] = 128 * (x * height + y * width) / (width * height); } } int chroma_width = (width + 1) / 2; int chroma_height = (height + 1) / 2; for (int x = 0; x < chroma_width; x++) { for (int y = 0; y < chroma_height; y++) { buffer->MutableDataU()[x + y * chroma_width] = 255 * x / (chroma_width - 1); buffer->MutableDataV()[x + y * chroma_width] = 255 * y / (chroma_height - 1); } } return buffer; } // The offsets and sizes describe the rectangle extracted from the // original (gradient) frame, in relative coordinates where the // original frame correspond to the unit square, 0.0 <= x, y < 1.0. void CheckCrop(webrtc::VideoFrameBuffer* frame, double offset_x, double offset_y, double rel_width, double rel_height) { int width = frame->width(); int height = frame->height(); // Check that pixel values in the corners match the gradient used // for initialization. for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { // Pixel coordinates of the corner. int x = i * (width - 1); int y = j * (height - 1); // Relative coordinates, range 0.0 - 1.0 correspond to the // size of the uncropped input frame. double orig_x = offset_x + i * rel_width; double orig_y = offset_y + j * rel_height; EXPECT_NEAR(frame->DataY()[x + y * frame->StrideY()] / 256.0, (orig_x + orig_y) / 2, 0.02); EXPECT_NEAR(frame->DataU()[x / 2 + (y / 2) * frame->StrideU()] / 256.0, orig_x, 0.02); EXPECT_NEAR(frame->DataV()[x / 2 + (y / 2) * frame->StrideV()] / 256.0, orig_y, 0.02); } } } } // namespace TEST(TestVideoFrame, InitialValues) { VideoFrame frame; EXPECT_TRUE(frame.IsZeroSize()); EXPECT_EQ(kVideoRotation_0, frame.rotation()); } TEST(TestVideoFrame, CopiesInitialFrameWithoutCrashing) { VideoFrame frame; VideoFrame frame2; frame2.CopyFrame(frame); } TEST(TestVideoFrame, WidthHeightValues) { VideoFrame frame; const int valid_value = 10; frame.CreateEmptyFrame(10, 10, 10, 14, 90); EXPECT_EQ(valid_value, frame.width()); EXPECT_EQ(valid_value, frame.height()); frame.set_timestamp(123u); EXPECT_EQ(123u, frame.timestamp()); frame.set_ntp_time_ms(456); EXPECT_EQ(456, frame.ntp_time_ms()); frame.set_render_time_ms(789); EXPECT_EQ(789, frame.render_time_ms()); } TEST(TestVideoFrame, SizeAllocation) { VideoFrame frame; frame. CreateEmptyFrame(10, 10, 12, 14, 220); int height = frame.height(); int stride_y = frame.video_frame_buffer()->StrideY(); int stride_u = frame.video_frame_buffer()->StrideU(); int stride_v = frame.video_frame_buffer()->StrideV(); // Verify that allocated size was computed correctly. EXPECT_EQ(ExpectedSize(stride_y, height, kYPlane), frame.allocated_size(kYPlane)); EXPECT_EQ(ExpectedSize(stride_u, height, kUPlane), frame.allocated_size(kUPlane)); EXPECT_EQ(ExpectedSize(stride_v, height, kVPlane), frame.allocated_size(kVPlane)); } TEST(TestVideoFrame, CopyFrame) { uint32_t timestamp = 1; int64_t ntp_time_ms = 2; int64_t render_time_ms = 3; int stride_y = 15; int stride_u = 10; int stride_v = 10; int width = 15; int height = 15; // Copy frame. VideoFrame small_frame; small_frame.CreateEmptyFrame(width, height, stride_y, stride_u, stride_v); small_frame.set_timestamp(timestamp); small_frame.set_ntp_time_ms(ntp_time_ms); small_frame.set_render_time_ms(render_time_ms); const int kSizeY = 400; const int kSizeU = 100; const int kSizeV = 100; const VideoRotation kRotation = kVideoRotation_270; uint8_t buffer_y[kSizeY]; uint8_t buffer_u[kSizeU]; uint8_t buffer_v[kSizeV]; memset(buffer_y, 16, kSizeY); memset(buffer_u, 8, kSizeU); memset(buffer_v, 4, kSizeV); VideoFrame big_frame; big_frame.CreateFrame(buffer_y, buffer_u, buffer_v, width + 5, height + 5, stride_y + 5, stride_u, stride_v, kRotation); // Frame of smaller dimensions. small_frame.CopyFrame(big_frame); EXPECT_TRUE(test::FramesEqual(small_frame, big_frame)); EXPECT_EQ(kRotation, small_frame.rotation()); // Frame of larger dimensions. small_frame.CreateEmptyFrame(width, height, stride_y, stride_u, stride_v); memset(small_frame.video_frame_buffer()->MutableDataY(), 1, small_frame.allocated_size(kYPlane)); memset(small_frame.video_frame_buffer()->MutableDataU(), 2, small_frame.allocated_size(kUPlane)); memset(small_frame.video_frame_buffer()->MutableDataV(), 3, small_frame.allocated_size(kVPlane)); big_frame.CopyFrame(small_frame); EXPECT_TRUE(test::FramesEqual(small_frame, big_frame)); } TEST(TestVideoFrame, ShallowCopy) { uint32_t timestamp = 1; int64_t ntp_time_ms = 2; int64_t render_time_ms = 3; int stride_y = 15; int stride_u = 10; int stride_v = 10; int width = 15; int height = 15; const int kSizeY = 400; const int kSizeU = 100; const int kSizeV = 100; const VideoRotation kRotation = kVideoRotation_270; uint8_t buffer_y[kSizeY]; uint8_t buffer_u[kSizeU]; uint8_t buffer_v[kSizeV]; memset(buffer_y, 16, kSizeY); memset(buffer_u, 8, kSizeU); memset(buffer_v, 4, kSizeV); VideoFrame frame1; frame1.CreateFrame(buffer_y, buffer_u, buffer_v, width, height, stride_y, stride_u, stride_v, kRotation); frame1.set_timestamp(timestamp); frame1.set_ntp_time_ms(ntp_time_ms); frame1.set_render_time_ms(render_time_ms); VideoFrame frame2; frame2.ShallowCopy(frame1); // To be able to access the buffers, we need const pointers to the frames. const VideoFrame* const_frame1_ptr = &frame1; const VideoFrame* const_frame2_ptr = &frame2; EXPECT_TRUE(const_frame1_ptr->video_frame_buffer()->DataY() == const_frame2_ptr->video_frame_buffer()->DataY()); EXPECT_TRUE(const_frame1_ptr->video_frame_buffer()->DataU() == const_frame2_ptr->video_frame_buffer()->DataU()); EXPECT_TRUE(const_frame1_ptr->video_frame_buffer()->DataV() == const_frame2_ptr->video_frame_buffer()->DataV()); EXPECT_EQ(frame2.timestamp(), frame1.timestamp()); EXPECT_EQ(frame2.ntp_time_ms(), frame1.ntp_time_ms()); EXPECT_EQ(frame2.render_time_ms(), frame1.render_time_ms()); EXPECT_EQ(frame2.rotation(), frame1.rotation()); frame2.set_timestamp(timestamp + 1); frame2.set_ntp_time_ms(ntp_time_ms + 1); frame2.set_render_time_ms(render_time_ms + 1); frame2.set_rotation(kVideoRotation_90); EXPECT_NE(frame2.timestamp(), frame1.timestamp()); EXPECT_NE(frame2.ntp_time_ms(), frame1.ntp_time_ms()); EXPECT_NE(frame2.render_time_ms(), frame1.render_time_ms()); EXPECT_NE(frame2.rotation(), frame1.rotation()); } TEST(TestVideoFrame, CopyBuffer) { VideoFrame frame1, frame2; int width = 15; int height = 15; int stride_y = 15; int stride_uv = 10; const int kSizeY = 225; const int kSizeUv = 80; frame2.CreateEmptyFrame(width, height, stride_y, stride_uv, stride_uv); uint8_t buffer_y[kSizeY]; uint8_t buffer_u[kSizeUv]; uint8_t buffer_v[kSizeUv]; memset(buffer_y, 16, kSizeY); memset(buffer_u, 8, kSizeUv); memset(buffer_v, 4, kSizeUv); frame2.CreateFrame(buffer_y, buffer_u, buffer_v, width, height, stride_y, stride_uv, stride_uv, kVideoRotation_0); // Expect exactly the same pixel data. EXPECT_TRUE(test::EqualPlane(buffer_y, frame2.video_frame_buffer()->DataY(), stride_y, 15, 15)); EXPECT_TRUE(test::EqualPlane(buffer_u, frame2.video_frame_buffer()->DataU(), stride_uv, 8, 8)); EXPECT_TRUE(test::EqualPlane(buffer_v, frame2.video_frame_buffer()->DataV(), stride_uv, 8, 8)); // Compare size. EXPECT_LE(kSizeY, frame2.allocated_size(kYPlane)); EXPECT_LE(kSizeUv, frame2.allocated_size(kUPlane)); EXPECT_LE(kSizeUv, frame2.allocated_size(kVPlane)); } TEST(TestVideoFrame, FailToReuseAllocation) { VideoFrame frame1; frame1.CreateEmptyFrame(640, 320, 640, 320, 320); const uint8_t* y = frame1.video_frame_buffer()->DataY(); const uint8_t* u = frame1.video_frame_buffer()->DataU(); const uint8_t* v = frame1.video_frame_buffer()->DataV(); // Make a shallow copy of |frame1|. VideoFrame frame2(frame1.video_frame_buffer(), 0, 0, kVideoRotation_0); frame1.CreateEmptyFrame(640, 320, 640, 320, 320); EXPECT_NE(y, frame1.video_frame_buffer()->DataY()); EXPECT_NE(u, frame1.video_frame_buffer()->DataU()); EXPECT_NE(v, frame1.video_frame_buffer()->DataV()); } TEST(TestVideoFrame, TextureInitialValues) { test::FakeNativeHandle* handle = new test::FakeNativeHandle(); VideoFrame frame = test::FakeNativeHandle::CreateFrame( handle, 640, 480, 100, 10, webrtc::kVideoRotation_0); EXPECT_EQ(640, frame.width()); EXPECT_EQ(480, frame.height()); EXPECT_EQ(100u, frame.timestamp()); EXPECT_EQ(10, frame.render_time_ms()); ASSERT_TRUE(frame.video_frame_buffer() != nullptr); EXPECT_EQ(handle, frame.video_frame_buffer()->native_handle()); frame.set_timestamp(200); EXPECT_EQ(200u, frame.timestamp()); frame.set_render_time_ms(20); EXPECT_EQ(20, frame.render_time_ms()); } TEST(TestI420FrameBuffer, Copy) { rtc::scoped_refptr buf1( I420Buffer::Create(20, 10)); memset(buf1->MutableDataY(), 1, 200); memset(buf1->MutableDataU(), 2, 50); memset(buf1->MutableDataV(), 3, 50); rtc::scoped_refptr buf2 = I420Buffer::Copy(buf1); EXPECT_TRUE(test::FrameBufsEqual(buf1, buf2)); } TEST(TestI420FrameBuffer, Scale) { rtc::scoped_refptr buf = CreateGradient(200, 100); // Pure scaling, no cropping. rtc::scoped_refptr scaled_buffer( I420Buffer::Create(150, 75)); scaled_buffer->ScaleFrom(buf); CheckCrop(scaled_buffer, 0.0, 0.0, 1.0, 1.0); } TEST(TestI420FrameBuffer, CropXCenter) { rtc::scoped_refptr buf = CreateGradient(200, 100); // Pure center cropping, no scaling. rtc::scoped_refptr scaled_buffer( I420Buffer::Create(100, 100)); scaled_buffer->CropAndScaleFrom(buf, 50, 0, 100, 100); CheckCrop(scaled_buffer, 0.25, 0.0, 0.5, 1.0); } TEST(TestI420FrameBuffer, CropXNotCenter) { rtc::scoped_refptr buf = CreateGradient(200, 100); // Non-center cropping, no scaling. rtc::scoped_refptr scaled_buffer( I420Buffer::Create(100, 100)); scaled_buffer->CropAndScaleFrom(buf, 25, 0, 100, 100); CheckCrop(scaled_buffer, 0.125, 0.0, 0.5, 1.0); } TEST(TestI420FrameBuffer, CropYCenter) { rtc::scoped_refptr buf = CreateGradient(100, 200); // Pure center cropping, no scaling. rtc::scoped_refptr scaled_buffer( I420Buffer::Create(100, 100)); scaled_buffer->CropAndScaleFrom(buf, 0, 50, 100, 100); CheckCrop(scaled_buffer, 0.0, 0.25, 1.0, 0.5); } TEST(TestI420FrameBuffer, CropYNotCenter) { rtc::scoped_refptr buf = CreateGradient(100, 200); // Non-center cropping, no scaling. rtc::scoped_refptr scaled_buffer( I420Buffer::Create(100, 100)); scaled_buffer->CropAndScaleFrom(buf, 0, 25, 100, 100); CheckCrop(scaled_buffer, 0.0, 0.125, 1.0, 0.5); } TEST(TestI420FrameBuffer, CropAndScale16x9) { rtc::scoped_refptr buf = CreateGradient(640, 480); // Center crop to 640 x 360 (16/9 aspect), then scale down by 2. rtc::scoped_refptr scaled_buffer( I420Buffer::Create(320, 180)); scaled_buffer->CropAndScaleFrom(buf); CheckCrop(scaled_buffer, 0.0, 0.125, 1.0, 0.75); } } // namespace webrtc