/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "webrtc/base/bind.h" #include "webrtc/base/event.h" #include "webrtc/base/gunit.h" #include "webrtc/base/task_queue.h" #include "webrtc/base/timeutils.h" namespace rtc { namespace { void CheckCurrent(const char* expected_queue, Event* signal, TaskQueue* queue) { EXPECT_TRUE(TaskQueue::IsCurrent(expected_queue)); EXPECT_TRUE(queue->IsCurrent()); if (signal) signal->Set(); } } // namespace TEST(TaskQueueTest, Construct) { static const char kQueueName[] = "Construct"; TaskQueue queue(kQueueName); EXPECT_FALSE(queue.IsCurrent()); } TEST(TaskQueueTest, PostAndCheckCurrent) { static const char kQueueName[] = "PostAndCheckCurrent"; TaskQueue queue(kQueueName); // We're not running a task, so there shouldn't be a current queue. EXPECT_FALSE(queue.IsCurrent()); EXPECT_FALSE(TaskQueue::Current()); Event event(false, false); queue.PostTask(Bind(&CheckCurrent, kQueueName, &event, &queue)); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostCustomTask) { static const char kQueueName[] = "PostCustomImplementation"; TaskQueue queue(kQueueName); Event event(false, false); class CustomTask : public QueuedTask { public: explicit CustomTask(Event* event) : event_(event) {} private: bool Run() override { event_->Set(); return false; // Never allows the task to be deleted by the queue. } Event* const event_; } my_task(&event); // Please don't do this in production code! :) queue.PostTask(std::unique_ptr(&my_task)); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostLambda) { static const char kQueueName[] = "PostLambda"; TaskQueue queue(kQueueName); Event event(false, false); queue.PostTask([&event]() { event.Set(); }); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostFromQueue) { static const char kQueueName[] = "PostFromQueue"; TaskQueue queue(kQueueName); Event event(false, false); queue.PostTask( [&event, &queue]() { queue.PostTask([&event]() { event.Set(); }); }); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostDelayed) { static const char kQueueName[] = "PostDelayed"; TaskQueue queue(kQueueName); Event event(false, false); uint32_t start = Time(); queue.PostDelayedTask(Bind(&CheckCurrent, kQueueName, &event, &queue), 100); EXPECT_TRUE(event.Wait(1000)); uint32_t end = Time(); EXPECT_GE(end - start, 100u); EXPECT_NEAR(end - start, 200u, 100u); // Accept 100-300. } TEST(TaskQueueTest, PostMultipleDelayed) { static const char kQueueName[] = "PostMultipleDelayed"; TaskQueue queue(kQueueName); std::vector> events; for (int i = 0; i < 10; ++i) { events.push_back(std::unique_ptr(new Event(false, false))); queue.PostDelayedTask( Bind(&CheckCurrent, kQueueName, events.back().get(), &queue), 10); } for (const auto& e : events) EXPECT_TRUE(e->Wait(100)); } TEST(TaskQueueTest, PostDelayedAfterDestruct) { static const char kQueueName[] = "PostDelayedAfterDestruct"; Event event(false, false); { TaskQueue queue(kQueueName); queue.PostDelayedTask(Bind(&CheckCurrent, kQueueName, &event, &queue), 100); } EXPECT_FALSE(event.Wait(200)); // Task should not run. } TEST(TaskQueueTest, PostAndReply) { static const char kPostQueue[] = "PostQueue"; static const char kReplyQueue[] = "ReplyQueue"; TaskQueue post_queue(kPostQueue); TaskQueue reply_queue(kReplyQueue); Event event(false, false); post_queue.PostTaskAndReply( Bind(&CheckCurrent, kPostQueue, nullptr, &post_queue), Bind(&CheckCurrent, kReplyQueue, &event, &reply_queue), &reply_queue); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostAndReuse) { static const char kPostQueue[] = "PostQueue"; static const char kReplyQueue[] = "ReplyQueue"; TaskQueue post_queue(kPostQueue); TaskQueue reply_queue(kReplyQueue); int call_count = 0; class ReusedTask : public QueuedTask { public: ReusedTask(int* counter, TaskQueue* reply_queue, Event* event) : counter_(counter), reply_queue_(reply_queue), event_(event) { EXPECT_EQ(0, *counter_); } private: bool Run() override { if (++(*counter_) == 1) { std::unique_ptr myself(this); reply_queue_->PostTask(std::move(myself)); // At this point, the object is owned by reply_queue_ and it's // theoratically possible that the object has been deleted (e.g. if // posting wasn't possible). So, don't touch any member variables here. // Indicate to the current queue that ownership has been transferred. return false; } else { EXPECT_EQ(2, *counter_); EXPECT_TRUE(reply_queue_->IsCurrent()); event_->Set(); return true; // Indicate that the object should be deleted. } } int* const counter_; TaskQueue* const reply_queue_; Event* const event_; }; Event event(false, false); std::unique_ptr task( new ReusedTask(&call_count, &reply_queue, &event)); post_queue.PostTask(std::move(task)); EXPECT_TRUE(event.Wait(1000)); } TEST(TaskQueueTest, PostAndReplyLambda) { static const char kPostQueue[] = "PostQueue"; static const char kReplyQueue[] = "ReplyQueue"; TaskQueue post_queue(kPostQueue); TaskQueue reply_queue(kReplyQueue); Event event(false, false); bool my_flag = false; post_queue.PostTaskAndReply([&my_flag]() { my_flag = true; }, [&event]() { event.Set(); }, &reply_queue); EXPECT_TRUE(event.Wait(1000)); EXPECT_TRUE(my_flag); } void TestPostTaskAndReply(TaskQueue* work_queue, const char* work_queue_name, Event* event) { ASSERT_FALSE(work_queue->IsCurrent()); work_queue->PostTaskAndReply( Bind(&CheckCurrent, work_queue_name, nullptr, work_queue), NewClosure([event]() { event->Set(); })); } // Does a PostTaskAndReply from within a task to post and reply to the current // queue. All in all there will be 3 tasks posted and run. TEST(TaskQueueTest, PostAndReply2) { static const char kQueueName[] = "PostAndReply2"; static const char kWorkQueueName[] = "PostAndReply2_Worker"; TaskQueue queue(kQueueName); TaskQueue work_queue(kWorkQueueName); Event event(false, false); queue.PostTask( Bind(&TestPostTaskAndReply, &work_queue, kWorkQueueName, &event)); EXPECT_TRUE(event.Wait(1000)); } // Tests posting more messages than a queue can queue up. // In situations like that, tasks will get dropped. TEST(TaskQueueTest, PostALot) { // To destruct the event after the queue has gone out of scope. Event event(false, false); int tasks_executed = 0; int tasks_cleaned_up = 0; static const int kTaskCount = 0xffff; { static const char kQueueName[] = "PostALot"; TaskQueue queue(kQueueName); // On linux, the limit of pending bytes in the pipe buffer is 0xffff. // So here we post a total of 0xffff+1 messages, which triggers a failure // case inside of the libevent queue implementation. queue.PostTask([&event]() { event.Wait(Event::kForever); }); for (int i = 0; i < kTaskCount; ++i) queue.PostTask(NewClosure([&tasks_executed]() { ++tasks_executed; }, [&tasks_cleaned_up]() { ++tasks_cleaned_up; })); event.Set(); // Unblock the first task. } EXPECT_GE(tasks_cleaned_up, tasks_executed); EXPECT_EQ(kTaskCount, tasks_cleaned_up); LOG(INFO) << "tasks executed: " << tasks_executed << ", tasks cleaned up: " << tasks_cleaned_up; } } // namespace rtc