/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <memory> #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/call.h" #include "webrtc/system_wrappers/include/clock.h" #include "webrtc/test/fake_network_pipe.h" using ::testing::_; using ::testing::AnyNumber; using ::testing::Return; using ::testing::Invoke; namespace webrtc { class TestReceiver : public PacketReceiver { public: TestReceiver() {} virtual ~TestReceiver() {} void IncomingPacket(const uint8_t* data, size_t length) { DeliverPacket(MediaType::ANY, data, length, PacketTime()); delete [] data; } virtual MOCK_METHOD4( DeliverPacket, DeliveryStatus(MediaType, const uint8_t*, size_t, const PacketTime&)); }; class ReorderTestReceiver : public TestReceiver { public: ReorderTestReceiver() {} virtual ~ReorderTestReceiver() {} DeliveryStatus DeliverPacket(MediaType media_type, const uint8_t* packet, size_t length, const PacketTime& packet_time) override { int seq_num; memcpy(&seq_num, packet, sizeof(int)); delivered_sequence_numbers_.push_back(seq_num); return PacketReceiver::DELIVERY_OK; } std::vector<int> delivered_sequence_numbers_; }; class FakeNetworkPipeTest : public ::testing::Test { public: FakeNetworkPipeTest() : fake_clock_(12345) {} protected: virtual void SetUp() { receiver_.reset(new TestReceiver()); ON_CALL(*receiver_, DeliverPacket(_, _, _, _)) .WillByDefault(Return(PacketReceiver::DELIVERY_OK)); } virtual void TearDown() { } void SendPackets(FakeNetworkPipe* pipe, int number_packets, int packet_size) { RTC_DCHECK_GE(packet_size, static_cast<int>(sizeof(int))); std::unique_ptr<uint8_t[]> packet(new uint8_t[packet_size]); for (int i = 0; i < number_packets; ++i) { // Set a sequence number for the packets by // using the first bytes in the packet. memcpy(packet.get(), &i, sizeof(int)); pipe->SendPacket(packet.get(), packet_size); } } int PacketTimeMs(int capacity_kbps, int packet_size) const { return 8 * packet_size / capacity_kbps; } SimulatedClock fake_clock_; std::unique_ptr<TestReceiver> receiver_; }; void DeleteMemory(uint8_t* data, int length) { delete [] data; } // Test the capacity link and verify we get as many packets as we expect. TEST_F(FakeNetworkPipeTest, CapacityTest) { FakeNetworkPipe::Config config; config.queue_length_packets = 20; config.link_capacity_kbps = 80; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); pipe->SetReceiver(receiver_.get()); // Add 10 packets of 1000 bytes, = 80 kb, and verify it takes one second to // get through the pipe. const int kNumPackets = 10; const int kPacketSize = 1000; SendPackets(pipe.get(), kNumPackets , kPacketSize); // Time to get one packet through the link. const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Time haven't increased yet, so we souldn't get any packets. EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); // Advance enough time to release one packet. fake_clock_.AdvanceTimeMilliseconds(kPacketTimeMs); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); // Release all but one packet fake_clock_.AdvanceTimeMilliseconds(9 * kPacketTimeMs - 1); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(8); pipe->Process(); // And the last one. fake_clock_.AdvanceTimeMilliseconds(1); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); } // Test the extra network delay. TEST_F(FakeNetworkPipeTest, ExtraDelayTest) { FakeNetworkPipe::Config config; config.queue_length_packets = 20; config.queue_delay_ms = 100; config.link_capacity_kbps = 80; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); pipe->SetReceiver(receiver_.get()); const int kNumPackets = 2; const int kPacketSize = 1000; SendPackets(pipe.get(), kNumPackets , kPacketSize); // Time to get one packet through the link. const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Increase more than kPacketTimeMs, but not more than the extra delay. fake_clock_.AdvanceTimeMilliseconds(kPacketTimeMs); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); // Advance the network delay to get the first packet. fake_clock_.AdvanceTimeMilliseconds(config.queue_delay_ms); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); // Advance one more kPacketTimeMs to get the last packet. fake_clock_.AdvanceTimeMilliseconds(kPacketTimeMs); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); } // Test the number of buffers and packets are dropped when sending too many // packets too quickly. TEST_F(FakeNetworkPipeTest, QueueLengthTest) { FakeNetworkPipe::Config config; config.queue_length_packets = 2; config.link_capacity_kbps = 80; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); pipe->SetReceiver(receiver_.get()); const int kPacketSize = 1000; const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Send three packets and verify only 2 are delivered. SendPackets(pipe.get(), 3, kPacketSize); // Increase time enough to deliver all three packets, verify only two are // delivered. fake_clock_.AdvanceTimeMilliseconds(3 * kPacketTimeMs); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(2); pipe->Process(); } // Test we get statistics as expected. TEST_F(FakeNetworkPipeTest, StatisticsTest) { FakeNetworkPipe::Config config; config.queue_length_packets = 2; config.queue_delay_ms = 20; config.link_capacity_kbps = 80; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); pipe->SetReceiver(receiver_.get()); const int kPacketSize = 1000; const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Send three packets and verify only 2 are delivered. SendPackets(pipe.get(), 3, kPacketSize); fake_clock_.AdvanceTimeMilliseconds(3 * kPacketTimeMs + config.queue_delay_ms); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(2); pipe->Process(); // Packet 1: kPacketTimeMs + config.queue_delay_ms, // packet 2: 2 * kPacketTimeMs + config.queue_delay_ms => 170 ms average. EXPECT_EQ(pipe->AverageDelay(), 170); EXPECT_EQ(pipe->sent_packets(), 2u); EXPECT_EQ(pipe->dropped_packets(), 1u); EXPECT_EQ(pipe->PercentageLoss(), 1/3.f); } // Change the link capacity half-way through the test and verify that the // delivery times change accordingly. TEST_F(FakeNetworkPipeTest, ChangingCapacityWithEmptyPipeTest) { FakeNetworkPipe::Config config; config.queue_length_packets = 20; config.link_capacity_kbps = 80; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); pipe->SetReceiver(receiver_.get()); // Add 10 packets of 1000 bytes, = 80 kb, and verify it takes one second to // get through the pipe. const int kNumPackets = 10; const int kPacketSize = 1000; SendPackets(pipe.get(), kNumPackets, kPacketSize); // Time to get one packet through the link. int packet_time_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Time hasn't increased yet, so we souldn't get any packets. EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); // Advance time in steps to release one packet at a time. for (int i = 0; i < kNumPackets; ++i) { fake_clock_.AdvanceTimeMilliseconds(packet_time_ms); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); } // Change the capacity. config.link_capacity_kbps /= 2; // Reduce to 50%. pipe->SetConfig(config); // Add another 10 packets of 1000 bytes, = 80 kb, and verify it takes two // seconds to get them through the pipe. SendPackets(pipe.get(), kNumPackets, kPacketSize); // Time to get one packet through the link. packet_time_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Time hasn't increased yet, so we souldn't get any packets. EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); // Advance time in steps to release one packet at a time. for (int i = 0; i < kNumPackets; ++i) { fake_clock_.AdvanceTimeMilliseconds(packet_time_ms); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); } // Check that all the packets were sent. EXPECT_EQ(static_cast<size_t>(2 * kNumPackets), pipe->sent_packets()); fake_clock_.AdvanceTimeMilliseconds(pipe->TimeUntilNextProcess()); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); } // Change the link capacity half-way through the test and verify that the // delivery times change accordingly. TEST_F(FakeNetworkPipeTest, ChangingCapacityWithPacketsInPipeTest) { FakeNetworkPipe::Config config; config.queue_length_packets = 20; config.link_capacity_kbps = 80; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); pipe->SetReceiver(receiver_.get()); // Add 10 packets of 1000 bytes, = 80 kb. const int kNumPackets = 10; const int kPacketSize = 1000; SendPackets(pipe.get(), kNumPackets, kPacketSize); // Time to get one packet through the link at the initial speed. int packet_time_1_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Change the capacity. config.link_capacity_kbps *= 2; // Double the capacity. pipe->SetConfig(config); // Add another 10 packets of 1000 bytes, = 80 kb, and verify it takes two // seconds to get them through the pipe. SendPackets(pipe.get(), kNumPackets, kPacketSize); // Time to get one packet through the link at the new capacity. int packet_time_2_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize); // Time hasn't increased yet, so we souldn't get any packets. EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); // Advance time in steps to release one packet at a time. for (int i = 0; i < kNumPackets; ++i) { fake_clock_.AdvanceTimeMilliseconds(packet_time_1_ms); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); } // Advance time in steps to release one packet at a time. for (int i = 0; i < kNumPackets; ++i) { fake_clock_.AdvanceTimeMilliseconds(packet_time_2_ms); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(1); pipe->Process(); } // Check that all the packets were sent. EXPECT_EQ(static_cast<size_t>(2 * kNumPackets), pipe->sent_packets()); fake_clock_.AdvanceTimeMilliseconds(pipe->TimeUntilNextProcess()); EXPECT_CALL(*receiver_, DeliverPacket(_, _, _, _)).Times(0); pipe->Process(); } // At first disallow reordering and then allow reordering. TEST_F(FakeNetworkPipeTest, DisallowReorderingThenAllowReordering) { FakeNetworkPipe::Config config; config.queue_length_packets = 1000; config.link_capacity_kbps = 800; config.queue_delay_ms = 100; config.delay_standard_deviation_ms = 10; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); ReorderTestReceiver* receiver = new ReorderTestReceiver(); receiver_.reset(receiver); pipe->SetReceiver(receiver_.get()); const uint32_t kNumPackets = 100; const int kPacketSize = 10; SendPackets(pipe.get(), kNumPackets, kPacketSize); fake_clock_.AdvanceTimeMilliseconds(1000); pipe->Process(); // Confirm that all packets have been delivered in order. EXPECT_EQ(kNumPackets, receiver->delivered_sequence_numbers_.size()); int last_seq_num = -1; for (int seq_num : receiver->delivered_sequence_numbers_) { EXPECT_GT(seq_num, last_seq_num); last_seq_num = seq_num; } config.allow_reordering = true; pipe->SetConfig(config); SendPackets(pipe.get(), kNumPackets, kPacketSize); fake_clock_.AdvanceTimeMilliseconds(1000); receiver->delivered_sequence_numbers_.clear(); pipe->Process(); // Confirm that all packets have been delivered // and that reordering has occured. EXPECT_EQ(kNumPackets, receiver->delivered_sequence_numbers_.size()); bool reordering_has_occured = false; last_seq_num = -1; for (int seq_num : receiver->delivered_sequence_numbers_) { if (last_seq_num > seq_num) { reordering_has_occured = true; break; } last_seq_num = seq_num; } EXPECT_TRUE(reordering_has_occured); } TEST_F(FakeNetworkPipeTest, BurstLoss) { const int kLossPercent = 5; const int kAvgBurstLength = 3; const int kNumPackets = 10000; const int kPacketSize = 10; FakeNetworkPipe::Config config; config.queue_length_packets = kNumPackets; config.loss_percent = kLossPercent; config.avg_burst_loss_length = kAvgBurstLength; std::unique_ptr<FakeNetworkPipe> pipe( new FakeNetworkPipe(&fake_clock_, config)); ReorderTestReceiver* receiver = new ReorderTestReceiver(); receiver_.reset(receiver); pipe->SetReceiver(receiver_.get()); SendPackets(pipe.get(), kNumPackets, kPacketSize); fake_clock_.AdvanceTimeMilliseconds(1000); pipe->Process(); // Check that the average loss is |kLossPercent| percent. int lost_packets = kNumPackets - receiver->delivered_sequence_numbers_.size(); double loss_fraction = lost_packets / static_cast<double>(kNumPackets); EXPECT_NEAR(kLossPercent / 100.0, loss_fraction, 0.05); // Find the number of bursts that has occurred. size_t received_packets = receiver->delivered_sequence_numbers_.size(); int num_bursts = 0; for (size_t i = 0; i < received_packets - 1; ++i) { int diff = receiver->delivered_sequence_numbers_[i + 1] - receiver->delivered_sequence_numbers_[i]; if (diff > 1) ++num_bursts; } double average_burst_length = static_cast<double>(lost_packets) / num_bursts; EXPECT_NEAR(kAvgBurstLength, average_burst_length, 0.3); } } // namespace webrtc