WIP: idiomatic Kotlin
This commit is contained in:
parent
b96de75330
commit
1ab80332ae
|
@ -1,32 +1,27 @@
|
|||
import org.apache.commons.lang3.mutable.MutableInt
|
||||
import kotlin.math.absoluteValue
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/signal_processing/include/signal_processing_library.h
|
||||
|
||||
// Macros specific for the fixed point implementation
|
||||
val WEBRTC_SPL_WORD16_MAX = 32767
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/signal_processing/include/spl_inl.h
|
||||
// webrtc/common_audio/signal_processing/spl_inl.c
|
||||
|
||||
// Table used by CountLeadingZeros32_NotBuiltin. For each UInt n
|
||||
// that's a sequence of 0 bits followed by a sequence of 1 bits, the entry at
|
||||
// index (n * 0x8c0b2891) shr 26 in this table gives the number of zero bits in
|
||||
// n.
|
||||
val kCountLeadingZeros32_Table = intArrayOf(
|
||||
/**
|
||||
* Table used by getLeadingZeroCount.
|
||||
* For each UInt n that's a sequence of 0 bits followed by a sequence of 1 bits, the entry at index
|
||||
* (n * 0x8c0b2891) shr 26 in this table gives the number of zero bits in n.
|
||||
*/
|
||||
val leadingZerosTable = intArrayOf(
|
||||
32, 8, 17, -1, -1, 14, -1, -1, -1, 20, -1, -1, -1, 28, -1, 18,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 26, 25, 24,
|
||||
4, 11, 23, 31, 3, 7, 10, 16, 22, 30, -1, -1, 2, 6, 13, 9,
|
||||
-1, 15, -1, 21, -1, 29, 19, -1, -1, -1, -1, -1, 1, 27, 5, 12
|
||||
).apply { assert(size == 64) }
|
||||
|
||||
// Returns the number of leading zero bits in the argument.
|
||||
fun CountLeadingZeros32(n: UInt): Int {
|
||||
// Normalize n by rounding up to the nearest number that is a sequence of 0
|
||||
// bits followed by a sequence of 1 bits. This number has the same number of
|
||||
// leading zeros as the original n. There are exactly 33 such values.
|
||||
/** Returns the number of leading zero bits in the argument. */
|
||||
fun getLeadingZeroCount(n: UInt): Int {
|
||||
// Normalize n by rounding up to the nearest number that is a sequence of 0 bits followed by a
|
||||
// sequence of 1 bits. This number has the same number of leading zeros as the original n.
|
||||
// There are exactly 33 such values.
|
||||
var normalized = n
|
||||
normalized = normalized or (normalized shr 1)
|
||||
normalized = normalized or (normalized shr 2)
|
||||
|
@ -34,50 +29,37 @@ fun CountLeadingZeros32(n: UInt): Int {
|
|||
normalized = normalized or (normalized shr 8)
|
||||
normalized = normalized or (normalized shr 16)
|
||||
|
||||
// Multiply the modified n with a constant selected (by exhaustive search)
|
||||
// such that each of the 33 possible values of n give a product whose 6 most
|
||||
// significant bits are unique. Then look up the answer in the table.
|
||||
return kCountLeadingZeros32_Table[((normalized * 0x8c0b2891u) shr 26).toInt()]
|
||||
// Multiply the modified n with a constant selected (by exhaustive search) such that each of the
|
||||
// 33 possible values of n give a product whose 6 most significant bits are unique.
|
||||
// Then look up the answer in the table.
|
||||
return leadingZerosTable[((normalized * 0x8c0b2891u) shr 26).toInt()]
|
||||
}
|
||||
|
||||
// Return the number of steps a signed int can be left-shifted without overflow,
|
||||
// or 0 if a == 0.
|
||||
inline fun NormW32(a: Int): Int {
|
||||
return if (a == 0)
|
||||
/**
|
||||
* Returns the number of bits by which a signed int can be left-shifted without overflow, or 0 if
|
||||
* a == 0.
|
||||
*/
|
||||
fun normSigned(a: Int): Int =
|
||||
if (a == 0)
|
||||
0
|
||||
else
|
||||
CountLeadingZeros32((if (a < 0) a.inv() else a).toUInt()) - 1
|
||||
}
|
||||
getLeadingZeroCount((if (a < 0) a.inv() else a).toUInt()) - 1
|
||||
|
||||
// Return the number of steps an unsigned int can be left-shifted without overflow,
|
||||
// or 0 if a == 0.
|
||||
inline fun NormU32(a: UInt): Int {
|
||||
return if (a == 0u) 0 else CountLeadingZeros32(a)
|
||||
}
|
||||
/**
|
||||
* Returns the number of bits by which an unsigned int can be left-shifted without overflow, or 0 if
|
||||
* a == 0.
|
||||
*/
|
||||
fun normUnsigned(a: UInt): Int = if (a == 0u) 0 else getLeadingZeroCount(a)
|
||||
|
||||
inline fun GetSizeInBits(n: UInt): Int {
|
||||
return 32 - CountLeadingZeros32(n)
|
||||
}
|
||||
/** Returns the number of bits needed to represent the specified value. */
|
||||
fun getBitCount(n: UInt): Int = 32 - getLeadingZeroCount(n)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/signal_processing/get_scaling_square.c
|
||||
|
||||
//
|
||||
// GetScalingSquare(...)
|
||||
//
|
||||
// Returns the # of bits required to scale the samples specified in the
|
||||
// [in_vector] parameter so that, if the squares of the samples are added the
|
||||
// # of times specified by the [times] parameter, the 32-bit addition will not
|
||||
// overflow (result in Int).
|
||||
//
|
||||
// Input:
|
||||
// - in_vector : Input vector to check scaling on
|
||||
// - in_vector_length : Samples in [in_vector]
|
||||
// - times : Number of additions to be performed
|
||||
//
|
||||
// Return value : Number of right bit shifts needed to avoid
|
||||
// overflow in the addition calculation
|
||||
fun GetScalingSquare(buffer: AudioBuffer, times: Int): Int {
|
||||
/**
|
||||
* Returns the number of right bit shifts that must be applied to each of the given samples so that,
|
||||
* if the squares of the samples are added [times] times, the signed 32-bit addition will not
|
||||
* overflow.
|
||||
*/
|
||||
fun getScalingSquare(buffer: AudioBuffer, times: Int): Int {
|
||||
var maxAbsSample = -1
|
||||
for (i in 0 until buffer.size) {
|
||||
val absSample = buffer[i].toInt().absoluteValue
|
||||
|
@ -90,39 +72,25 @@ fun GetScalingSquare(buffer: AudioBuffer, times: Int): Int {
|
|||
return 0 // Since norm(0) returns 0
|
||||
}
|
||||
|
||||
val t = NormW32(maxAbsSample * maxAbsSample)
|
||||
val bitCount = GetSizeInBits(times.toUInt())
|
||||
val t = normSigned(maxAbsSample * maxAbsSample)
|
||||
val bitCount = getBitCount(times.toUInt())
|
||||
return if (t > bitCount) 0 else bitCount - t
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/signal_processing/energy.c
|
||||
|
||||
data class EnergyResult(
|
||||
// Number of left bit shifts needed to get the physical energy value, i.e, to get the Q0 value
|
||||
/**
|
||||
* The number of left bit shifts needed to get the physical energy value, i.e, to get the Q0
|
||||
* value
|
||||
*/
|
||||
val rightShifts: Int,
|
||||
|
||||
// Energy value in Q(-[scale_factor])
|
||||
/** The energy value in Q(-[scale_factor]) */
|
||||
val energy: Int
|
||||
)
|
||||
|
||||
//
|
||||
// Energy(...)
|
||||
//
|
||||
// Calculates the energy of a vector
|
||||
//
|
||||
// Input:
|
||||
// - vector : Vector which the energy should be calculated on
|
||||
// - vector_length : Number of samples in vector
|
||||
//
|
||||
// Output:
|
||||
// - scale_factor : Number of left bit shifts needed to get the physical
|
||||
// energy value, i.e, to get the Q0 value
|
||||
//
|
||||
// Return value : Energy value in Q(-[scale_factor])
|
||||
//
|
||||
fun Energy(buffer: AudioBuffer): EnergyResult {
|
||||
val scaling = GetScalingSquare(buffer, buffer.size)
|
||||
/** Calculates the energy of an audio buffer. */
|
||||
fun getEnergy(buffer: AudioBuffer): EnergyResult {
|
||||
val scaling = getScalingSquare(buffer, buffer.size)
|
||||
|
||||
var energy = 0
|
||||
for (i in 0 until buffer.size) {
|
||||
|
@ -132,118 +100,80 @@ fun Energy(buffer: AudioBuffer): EnergyResult {
|
|||
return EnergyResult(scaling, energy)
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/signal_processing/division_operations.c
|
||||
|
||||
//
|
||||
// DivW32W16(...)
|
||||
//
|
||||
// Divides a Int [num] by a Int [den].
|
||||
//
|
||||
// If [den]==0, (Int)0x7FFFFFFF is returned.
|
||||
//
|
||||
// Input:
|
||||
// - num : Numerator
|
||||
// - den : Denominator
|
||||
//
|
||||
// Return value : Result of the division (as a Int), i.e., the
|
||||
// integer part of num/den.
|
||||
//
|
||||
fun DivW32W16(num: Int, den: Int) =
|
||||
if (den != 0) num / den else Int.MAX_VALUE
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/vad/vad_gmm.c
|
||||
/** Performs a safe integer division, returning [Int.MAX_VALUE] if [denominator] = 0. */
|
||||
infix fun Int.safeDiv(denominator: Int) = if (denominator != 0) this / denominator else Int.MAX_VALUE
|
||||
|
||||
data class GaussianProbabilityResult(
|
||||
// (probability for [input]) = 1 / [std] * exp(-([input] - [mean])^2 / (2 * [std]^2))
|
||||
/** (probability for input) = 1 / std * exp(-(input - mean)^2 / (2 * std^2)) */
|
||||
val probability: Int,
|
||||
// Input used when updating the model, Q11.
|
||||
// [delta] = ([input] - [mean]) / [std]^2.
|
||||
|
||||
/**
|
||||
* Input used when updating the model, Q11.
|
||||
* delta = (input - mean) / std^2.
|
||||
*/
|
||||
val delta: Int
|
||||
)
|
||||
|
||||
val kCompVar = 22005
|
||||
val kLog2Exp = 5909 // log2(exp(1)) in Q12.
|
||||
|
||||
// Calculates the probability for [input], given that [input] comes from a
|
||||
// normal distribution with mean and standard deviation ([mean], [std]).
|
||||
//
|
||||
// Inputs:
|
||||
// - input : input sample in Q4.
|
||||
// - mean : mean input in the statistical model, Q7.
|
||||
// - std : standard deviation, Q7.
|
||||
//
|
||||
// Output:
|
||||
//
|
||||
// - delta : input used when updating the model, Q11.
|
||||
// [delta] = ([input] - [mean]) / [std]^2.
|
||||
//
|
||||
// Return:
|
||||
// (probability for [input]) =
|
||||
// 1 / [std] * exp(-([input] - [mean])^2 / (2 * [std]^2));
|
||||
//---------------------------------------------------------------------------------
|
||||
// For a normal distribution, the probability of [input] is calculated and
|
||||
// returned (in Q20). The formula for normal distributed probability is
|
||||
//
|
||||
// 1 / s * exp(-(x - m)^2 / (2 * s^2))
|
||||
//
|
||||
// where the parameters are given in the following Q domains:
|
||||
// m = [mean] (Q7)
|
||||
// s = [std] (Q7)
|
||||
// x = [input] (Q4)
|
||||
// in addition to the probability we output [delta] (in Q11) used when updating
|
||||
// the noise/speech model.
|
||||
fun GaussianProbability(input: Int, mean: Int, std: Int): GaussianProbabilityResult {
|
||||
/**
|
||||
* Calculates the probability for [input], given that [input] comes from a normal distribution with
|
||||
* mean [mean] and standard deviation [std].
|
||||
*
|
||||
* @param [input] Input sample in Q4.
|
||||
* @param [mean] Mean input in the statistical model, Q7.
|
||||
* @param [std] Standard deviation, Q7.
|
||||
*/
|
||||
fun getGaussianProbability(input: Int, mean: Int, std: Int): GaussianProbabilityResult {
|
||||
var tmp16 = 0
|
||||
var inv_std = 0
|
||||
var inv_std2 = 0
|
||||
var exp_value = 0
|
||||
var invStd = 0
|
||||
var invStd2 = 0
|
||||
var expValue = 0
|
||||
var tmp32 = 0
|
||||
|
||||
// Calculate [inv_std] = 1 / s, in Q10.
|
||||
// 131072 = 1 in Q17, and ([std] shr 1) is for rounding instead of truncation.
|
||||
// Q-domain: Q17 / Q7 = Q10.
|
||||
// Calculate invStd = 1 / s, in Q10.
|
||||
// 131072 = 1 in Q17, and (std shr 1) is for rounding instead of truncation.
|
||||
// Q-domain: Q17 / Q7 = Q10
|
||||
tmp32 = 131072 + (std shr 1)
|
||||
inv_std = DivW32W16(tmp32, std)
|
||||
invStd = tmp32 safeDiv std
|
||||
|
||||
// Calculate [inv_std2] = 1 / s^2, in Q14.
|
||||
tmp16 = inv_std shr 2 // Q10 -> Q8.
|
||||
// Q-domain: (Q8 * Q8) shr 2 = Q14.
|
||||
inv_std2 = (tmp16 * tmp16) shr 2
|
||||
// Calculate inv_std2 = 1 / s^2, in Q14
|
||||
tmp16 = invStd shr 2 // Q10 -> Q8.
|
||||
// Q-domain: (Q8 * Q8) shr 2 = Q14
|
||||
invStd2 = (tmp16 * tmp16) shr 2
|
||||
|
||||
tmp16 = input shl 3 // Q4 -> Q7
|
||||
tmp16 -= mean // Q7 - Q7 = Q7
|
||||
|
||||
// To be used later, when updating noise/speech model.
|
||||
// [delta] = (x - m) / s^2, in Q11.
|
||||
// Q-domain: (Q14 * Q7) shr 10 = Q11.
|
||||
val delta = (inv_std2 * tmp16) shr 10
|
||||
// delta = (x - m) / s^2, in Q11.
|
||||
// Q-domain: (Q14 * Q7) shr 10 = Q11
|
||||
val delta = (invStd2 * tmp16) shr 10
|
||||
|
||||
// Calculate the exponent [tmp32] = (x - m)^2 / (2 * s^2), in Q10. Replacing
|
||||
// division by two with one shift.
|
||||
// Calculate the exponent [tmp32] = (x - m)^2 / (2 * s^2), in Q10.
|
||||
// Replacing division by two with one shift.
|
||||
// Q-domain: (Q11 * Q7) shr 8 = Q10.
|
||||
tmp32 = (delta * tmp16) shr 9
|
||||
|
||||
// If the exponent is small enough to give a non-zero probability we calculate
|
||||
// [exp_value] ~= exp(-(x - m)^2 / (2 * s^2))
|
||||
// ~= exp2(-log2(exp(1)) * [tmp32]).
|
||||
// If the exponent is small enough to give a non-zero probability, we calculate
|
||||
// exp_value ~= exp(-(x - m)^2 / (2 * s^2))
|
||||
// ~= exp2(-log2(exp(1)) * tmp32)
|
||||
val kCompVar = 22005
|
||||
if (tmp32 < kCompVar) {
|
||||
// Calculate [tmp16] = log2(exp(1)) * [tmp32], in Q10.
|
||||
// Q-domain: (Q12 * Q10) shr 12 = Q10.
|
||||
val kLog2Exp = 5909 // log2(exp(1)) in Q12.
|
||||
tmp16 = (kLog2Exp * tmp32) shr 12
|
||||
tmp16 = -tmp16
|
||||
exp_value = 0x0400 or (tmp16 and 0x03FF)
|
||||
expValue = 0x0400 or (tmp16 and 0x03FF)
|
||||
tmp16 = tmp16 xor 0xFFFF
|
||||
tmp16 = tmp16 shr 10
|
||||
tmp16 += 1
|
||||
// Get [exp_value] = exp(-[tmp32]) in Q10.
|
||||
exp_value = exp_value shr tmp16
|
||||
expValue = expValue shr tmp16
|
||||
}
|
||||
|
||||
// Calculate and return (1 / s) * exp(-(x - m)^2 / (2 * s^2)), in Q20.
|
||||
// Q-domain: Q10 * Q10 = Q20.
|
||||
val probability = inv_std * exp_value
|
||||
val probability = invStd * expValue
|
||||
return GaussianProbabilityResult(probability, delta)
|
||||
}
|
||||
|
||||
|
@ -435,14 +365,14 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
|
||||
// Probability under H0, that is, probability of frame being noise.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
val pNoise = GaussianProbability(features[channel], self.noise_means[gaussian], self.noise_stds[gaussian])
|
||||
val pNoise = getGaussianProbability(features[channel], self.noise_means[gaussian], self.noise_stds[gaussian])
|
||||
deltaN[gaussian] = pNoise.delta
|
||||
noise_probability[k] = kNoiseDataWeights[gaussian] * pNoise.probability
|
||||
h0_test += noise_probability[k] // Q27
|
||||
|
||||
// Probability under H1, that is, probability of frame being speech.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
val pSpeech = GaussianProbability(features[channel], self.speech_means[gaussian], self.speech_stds[gaussian])
|
||||
val pSpeech = getGaussianProbability(features[channel], self.speech_means[gaussian], self.speech_stds[gaussian])
|
||||
speech_probability[k] = kSpeechDataWeights[gaussian] * pSpeech.probability
|
||||
deltaS[gaussian] = pSpeech.delta
|
||||
h1_test += speech_probability[k] // Q27
|
||||
|
@ -460,8 +390,8 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
//
|
||||
// Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
|
||||
// Further, b0 and b1 are independent and on the average the two terms cancel.
|
||||
val shifts_h0 = if (h0_test != 0) NormW32(h0_test) else 31
|
||||
val shifts_h1 = if (h1_test != 0) NormW32(h1_test) else 31
|
||||
val shifts_h0 = if (h0_test != 0) normSigned(h0_test) else 31
|
||||
val shifts_h1 = if (h1_test != 0) normSigned(h1_test) else 31
|
||||
val log_likelihood_ratio = shifts_h0 - shifts_h1
|
||||
|
||||
// Update [sum_log_likelihood_ratios] with spectrum weighting. This is
|
||||
|
@ -481,7 +411,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
// High probability of noise. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM.
|
||||
val tmp = (noise_probability[0] and 0xFFFFF000u.toInt()) shl 2 // Q29
|
||||
ngprvec[channel] = DivW32W16(tmp, h0) // Q14
|
||||
ngprvec[channel] = tmp safeDiv h0 // Q14
|
||||
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel]
|
||||
} else {
|
||||
// Low noise probability. Assign conditional probability 1 to the first
|
||||
|
@ -495,7 +425,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
// High probability of speech. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
|
||||
val tmp = (speech_probability[0] and 0xFFFFF000u.toInt()) shl 2 // Q29
|
||||
sgprvec[channel] = DivW32W16(tmp, h1) // Q14
|
||||
sgprvec[channel] = tmp safeDiv h1 // Q14
|
||||
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel]
|
||||
}
|
||||
}
|
||||
|
@ -589,9 +519,9 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
|
||||
// 0.1 * Q20 / Q7 = Q13.
|
||||
if (tmp2_s32 > 0) {
|
||||
tmp_s16 = DivW32W16(tmp2_s32, ssk * 10)
|
||||
tmp_s16 = tmp2_s32 safeDiv (ssk * 10)
|
||||
} else {
|
||||
tmp_s16 = DivW32W16(-tmp2_s32, ssk * 10)
|
||||
tmp_s16 = -tmp2_s32 safeDiv (ssk * 10)
|
||||
tmp_s16 = -tmp_s16
|
||||
}
|
||||
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
|
||||
|
@ -621,9 +551,9 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
|
||||
// Q20 / Q7 = Q13.
|
||||
if (tmp1_s32 > 0) {
|
||||
tmp_s16 = DivW32W16(tmp1_s32, nsk)
|
||||
tmp_s16 = tmp1_s32 safeDiv nsk
|
||||
} else {
|
||||
tmp_s16 = DivW32W16(-tmp1_s32, nsk)
|
||||
tmp_s16 = -tmp1_s32 safeDiv nsk
|
||||
tmp_s16 = -tmp_s16
|
||||
}
|
||||
tmp_s16 += 32 // Rounding
|
||||
|
@ -847,7 +777,7 @@ fun FindMinimum(self: VadInstT, feature_value: Int, channel: Int): Int {
|
|||
}
|
||||
}
|
||||
tmp32 = (alpha + 1) * self.mean_value[channel]
|
||||
tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median
|
||||
tmp32 += (Short.MAX_VALUE - alpha) * current_median
|
||||
tmp32 += 16384
|
||||
self.mean_value[channel] = tmp32 shr 15
|
||||
|
||||
|
@ -992,7 +922,7 @@ fun SplitFilter(input: AudioBuffer, upper_state: MutableInt, lower_state: Mutabl
|
|||
fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int {
|
||||
assert(input.size > 0)
|
||||
|
||||
val energyResult = Energy(input)
|
||||
val energyResult = getEnergy(input)
|
||||
// [tot_rshifts] accumulates the number of right shifts performed on [energy].
|
||||
var tot_rshifts = energyResult.rightShifts
|
||||
// The [energy] will be normalized to 15 bits. We use unsigned integer because
|
||||
|
@ -1005,7 +935,7 @@ fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int
|
|||
|
||||
// By construction, normalizing to 15 bits is equivalent with 17 leading
|
||||
// zeros of an unsigned 32 bit value.
|
||||
val normalizing_rshifts = 17 - NormU32(energy)
|
||||
val normalizing_rshifts = 17 - normUnsigned(energy)
|
||||
// In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
|
||||
// (14 shl 10), which is what we initialize [log2_energy] with. For a more
|
||||
// detailed derivations, see below.
|
||||
|
|
Loading…
Reference in New Issue