WIP: idiomatic Kotlin

This commit is contained in:
Daniel Wolf 2019-10-04 14:50:59 +02:00
parent b96de75330
commit 1ab80332ae
1 changed files with 99 additions and 169 deletions

View File

@ -1,32 +1,27 @@
import org.apache.commons.lang3.mutable.MutableInt
import kotlin.math.absoluteValue
///////////////////////////////////////////////////////////////////////////////////////////////////////
// webrtc/common_audio/signal_processing/include/signal_processing_library.h
// Macros specific for the fixed point implementation
val WEBRTC_SPL_WORD16_MAX = 32767
///////////////////////////////////////////////////////////////////////////////////////////////////////
// webrtc/common_audio/signal_processing/include/spl_inl.h
// webrtc/common_audio/signal_processing/spl_inl.c
// Table used by CountLeadingZeros32_NotBuiltin. For each UInt n
// that's a sequence of 0 bits followed by a sequence of 1 bits, the entry at
// index (n * 0x8c0b2891) shr 26 in this table gives the number of zero bits in
// n.
val kCountLeadingZeros32_Table = intArrayOf(
/**
* Table used by getLeadingZeroCount.
* For each UInt n that's a sequence of 0 bits followed by a sequence of 1 bits, the entry at index
* (n * 0x8c0b2891) shr 26 in this table gives the number of zero bits in n.
*/
val leadingZerosTable = intArrayOf(
32, 8, 17, -1, -1, 14, -1, -1, -1, 20, -1, -1, -1, 28, -1, 18,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 26, 25, 24,
4, 11, 23, 31, 3, 7, 10, 16, 22, 30, -1, -1, 2, 6, 13, 9,
-1, 15, -1, 21, -1, 29, 19, -1, -1, -1, -1, -1, 1, 27, 5, 12
).apply { assert(size == 64) }
// Returns the number of leading zero bits in the argument.
fun CountLeadingZeros32(n: UInt): Int {
// Normalize n by rounding up to the nearest number that is a sequence of 0
// bits followed by a sequence of 1 bits. This number has the same number of
// leading zeros as the original n. There are exactly 33 such values.
/** Returns the number of leading zero bits in the argument. */
fun getLeadingZeroCount(n: UInt): Int {
// Normalize n by rounding up to the nearest number that is a sequence of 0 bits followed by a
// sequence of 1 bits. This number has the same number of leading zeros as the original n.
// There are exactly 33 such values.
var normalized = n
normalized = normalized or (normalized shr 1)
normalized = normalized or (normalized shr 2)
@ -34,50 +29,37 @@ fun CountLeadingZeros32(n: UInt): Int {
normalized = normalized or (normalized shr 8)
normalized = normalized or (normalized shr 16)
// Multiply the modified n with a constant selected (by exhaustive search)
// such that each of the 33 possible values of n give a product whose 6 most
// significant bits are unique. Then look up the answer in the table.
return kCountLeadingZeros32_Table[((normalized * 0x8c0b2891u) shr 26).toInt()]
// Multiply the modified n with a constant selected (by exhaustive search) such that each of the
// 33 possible values of n give a product whose 6 most significant bits are unique.
// Then look up the answer in the table.
return leadingZerosTable[((normalized * 0x8c0b2891u) shr 26).toInt()]
}
// Return the number of steps a signed int can be left-shifted without overflow,
// or 0 if a == 0.
inline fun NormW32(a: Int): Int {
return if (a == 0)
/**
* Returns the number of bits by which a signed int can be left-shifted without overflow, or 0 if
* a == 0.
*/
fun normSigned(a: Int): Int =
if (a == 0)
0
else
CountLeadingZeros32((if (a < 0) a.inv() else a).toUInt()) - 1
}
getLeadingZeroCount((if (a < 0) a.inv() else a).toUInt()) - 1
// Return the number of steps an unsigned int can be left-shifted without overflow,
// or 0 if a == 0.
inline fun NormU32(a: UInt): Int {
return if (a == 0u) 0 else CountLeadingZeros32(a)
}
/**
* Returns the number of bits by which an unsigned int can be left-shifted without overflow, or 0 if
* a == 0.
*/
fun normUnsigned(a: UInt): Int = if (a == 0u) 0 else getLeadingZeroCount(a)
inline fun GetSizeInBits(n: UInt): Int {
return 32 - CountLeadingZeros32(n)
}
/** Returns the number of bits needed to represent the specified value. */
fun getBitCount(n: UInt): Int = 32 - getLeadingZeroCount(n)
///////////////////////////////////////////////////////////////////////////////////////////////////////
// webrtc/common_audio/signal_processing/get_scaling_square.c
//
// GetScalingSquare(...)
//
// Returns the # of bits required to scale the samples specified in the
// [in_vector] parameter so that, if the squares of the samples are added the
// # of times specified by the [times] parameter, the 32-bit addition will not
// overflow (result in Int).
//
// Input:
// - in_vector : Input vector to check scaling on
// - in_vector_length : Samples in [in_vector]
// - times : Number of additions to be performed
//
// Return value : Number of right bit shifts needed to avoid
// overflow in the addition calculation
fun GetScalingSquare(buffer: AudioBuffer, times: Int): Int {
/**
* Returns the number of right bit shifts that must be applied to each of the given samples so that,
* if the squares of the samples are added [times] times, the signed 32-bit addition will not
* overflow.
*/
fun getScalingSquare(buffer: AudioBuffer, times: Int): Int {
var maxAbsSample = -1
for (i in 0 until buffer.size) {
val absSample = buffer[i].toInt().absoluteValue
@ -90,39 +72,25 @@ fun GetScalingSquare(buffer: AudioBuffer, times: Int): Int {
return 0 // Since norm(0) returns 0
}
val t = NormW32(maxAbsSample * maxAbsSample)
val bitCount = GetSizeInBits(times.toUInt())
val t = normSigned(maxAbsSample * maxAbsSample)
val bitCount = getBitCount(times.toUInt())
return if (t > bitCount) 0 else bitCount - t
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
// webrtc/common_audio/signal_processing/energy.c
data class EnergyResult(
// Number of left bit shifts needed to get the physical energy value, i.e, to get the Q0 value
/**
* The number of left bit shifts needed to get the physical energy value, i.e, to get the Q0
* value
*/
val rightShifts: Int,
// Energy value in Q(-[scale_factor])
/** The energy value in Q(-[scale_factor]) */
val energy: Int
)
//
// Energy(...)
//
// Calculates the energy of a vector
//
// Input:
// - vector : Vector which the energy should be calculated on
// - vector_length : Number of samples in vector
//
// Output:
// - scale_factor : Number of left bit shifts needed to get the physical
// energy value, i.e, to get the Q0 value
//
// Return value : Energy value in Q(-[scale_factor])
//
fun Energy(buffer: AudioBuffer): EnergyResult {
val scaling = GetScalingSquare(buffer, buffer.size)
/** Calculates the energy of an audio buffer. */
fun getEnergy(buffer: AudioBuffer): EnergyResult {
val scaling = getScalingSquare(buffer, buffer.size)
var energy = 0
for (i in 0 until buffer.size) {
@ -132,118 +100,80 @@ fun Energy(buffer: AudioBuffer): EnergyResult {
return EnergyResult(scaling, energy)
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
// webrtc/common_audio/signal_processing/division_operations.c
//
// DivW32W16(...)
//
// Divides a Int [num] by a Int [den].
//
// If [den]==0, (Int)0x7FFFFFFF is returned.
//
// Input:
// - num : Numerator
// - den : Denominator
//
// Return value : Result of the division (as a Int), i.e., the
// integer part of num/den.
//
fun DivW32W16(num: Int, den: Int) =
if (den != 0) num / den else Int.MAX_VALUE
///////////////////////////////////////////////////////////////////////////////////////////////////////
// webrtc/common_audio/vad/vad_gmm.c
/** Performs a safe integer division, returning [Int.MAX_VALUE] if [denominator] = 0. */
infix fun Int.safeDiv(denominator: Int) = if (denominator != 0) this / denominator else Int.MAX_VALUE
data class GaussianProbabilityResult(
// (probability for [input]) = 1 / [std] * exp(-([input] - [mean])^2 / (2 * [std]^2))
/** (probability for input) = 1 / std * exp(-(input - mean)^2 / (2 * std^2)) */
val probability: Int,
// Input used when updating the model, Q11.
// [delta] = ([input] - [mean]) / [std]^2.
/**
* Input used when updating the model, Q11.
* delta = (input - mean) / std^2.
*/
val delta: Int
)
val kCompVar = 22005
val kLog2Exp = 5909 // log2(exp(1)) in Q12.
// Calculates the probability for [input], given that [input] comes from a
// normal distribution with mean and standard deviation ([mean], [std]).
//
// Inputs:
// - input : input sample in Q4.
// - mean : mean input in the statistical model, Q7.
// - std : standard deviation, Q7.
//
// Output:
//
// - delta : input used when updating the model, Q11.
// [delta] = ([input] - [mean]) / [std]^2.
//
// Return:
// (probability for [input]) =
// 1 / [std] * exp(-([input] - [mean])^2 / (2 * [std]^2));
//---------------------------------------------------------------------------------
// For a normal distribution, the probability of [input] is calculated and
// returned (in Q20). The formula for normal distributed probability is
//
// 1 / s * exp(-(x - m)^2 / (2 * s^2))
//
// where the parameters are given in the following Q domains:
// m = [mean] (Q7)
// s = [std] (Q7)
// x = [input] (Q4)
// in addition to the probability we output [delta] (in Q11) used when updating
// the noise/speech model.
fun GaussianProbability(input: Int, mean: Int, std: Int): GaussianProbabilityResult {
/**
* Calculates the probability for [input], given that [input] comes from a normal distribution with
* mean [mean] and standard deviation [std].
*
* @param [input] Input sample in Q4.
* @param [mean] Mean input in the statistical model, Q7.
* @param [std] Standard deviation, Q7.
*/
fun getGaussianProbability(input: Int, mean: Int, std: Int): GaussianProbabilityResult {
var tmp16 = 0
var inv_std = 0
var inv_std2 = 0
var exp_value = 0
var invStd = 0
var invStd2 = 0
var expValue = 0
var tmp32 = 0
// Calculate [inv_std] = 1 / s, in Q10.
// 131072 = 1 in Q17, and ([std] shr 1) is for rounding instead of truncation.
// Q-domain: Q17 / Q7 = Q10.
// Calculate invStd = 1 / s, in Q10.
// 131072 = 1 in Q17, and (std shr 1) is for rounding instead of truncation.
// Q-domain: Q17 / Q7 = Q10
tmp32 = 131072 + (std shr 1)
inv_std = DivW32W16(tmp32, std)
invStd = tmp32 safeDiv std
// Calculate [inv_std2] = 1 / s^2, in Q14.
tmp16 = inv_std shr 2 // Q10 -> Q8.
// Q-domain: (Q8 * Q8) shr 2 = Q14.
inv_std2 = (tmp16 * tmp16) shr 2
// Calculate inv_std2 = 1 / s^2, in Q14
tmp16 = invStd shr 2 // Q10 -> Q8.
// Q-domain: (Q8 * Q8) shr 2 = Q14
invStd2 = (tmp16 * tmp16) shr 2
tmp16 = input shl 3 // Q4 -> Q7
tmp16 -= mean // Q7 - Q7 = Q7
// To be used later, when updating noise/speech model.
// [delta] = (x - m) / s^2, in Q11.
// Q-domain: (Q14 * Q7) shr 10 = Q11.
val delta = (inv_std2 * tmp16) shr 10
// delta = (x - m) / s^2, in Q11.
// Q-domain: (Q14 * Q7) shr 10 = Q11
val delta = (invStd2 * tmp16) shr 10
// Calculate the exponent [tmp32] = (x - m)^2 / (2 * s^2), in Q10. Replacing
// division by two with one shift.
// Calculate the exponent [tmp32] = (x - m)^2 / (2 * s^2), in Q10.
// Replacing division by two with one shift.
// Q-domain: (Q11 * Q7) shr 8 = Q10.
tmp32 = (delta * tmp16) shr 9
// If the exponent is small enough to give a non-zero probability we calculate
// [exp_value] ~= exp(-(x - m)^2 / (2 * s^2))
// ~= exp2(-log2(exp(1)) * [tmp32]).
// If the exponent is small enough to give a non-zero probability, we calculate
// exp_value ~= exp(-(x - m)^2 / (2 * s^2))
// ~= exp2(-log2(exp(1)) * tmp32)
val kCompVar = 22005
if (tmp32 < kCompVar) {
// Calculate [tmp16] = log2(exp(1)) * [tmp32], in Q10.
// Q-domain: (Q12 * Q10) shr 12 = Q10.
val kLog2Exp = 5909 // log2(exp(1)) in Q12.
tmp16 = (kLog2Exp * tmp32) shr 12
tmp16 = -tmp16
exp_value = 0x0400 or (tmp16 and 0x03FF)
expValue = 0x0400 or (tmp16 and 0x03FF)
tmp16 = tmp16 xor 0xFFFF
tmp16 = tmp16 shr 10
tmp16 += 1
// Get [exp_value] = exp(-[tmp32]) in Q10.
exp_value = exp_value shr tmp16
expValue = expValue shr tmp16
}
// Calculate and return (1 / s) * exp(-(x - m)^2 / (2 * s^2)), in Q20.
// Q-domain: Q10 * Q10 = Q20.
val probability = inv_std * exp_value
val probability = invStd * expValue
return GaussianProbabilityResult(probability, delta)
}
@ -435,14 +365,14 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
// Probability under H0, that is, probability of frame being noise.
// Value given in Q27 = Q7 * Q20.
val pNoise = GaussianProbability(features[channel], self.noise_means[gaussian], self.noise_stds[gaussian])
val pNoise = getGaussianProbability(features[channel], self.noise_means[gaussian], self.noise_stds[gaussian])
deltaN[gaussian] = pNoise.delta
noise_probability[k] = kNoiseDataWeights[gaussian] * pNoise.probability
h0_test += noise_probability[k] // Q27
// Probability under H1, that is, probability of frame being speech.
// Value given in Q27 = Q7 * Q20.
val pSpeech = GaussianProbability(features[channel], self.speech_means[gaussian], self.speech_stds[gaussian])
val pSpeech = getGaussianProbability(features[channel], self.speech_means[gaussian], self.speech_stds[gaussian])
speech_probability[k] = kSpeechDataWeights[gaussian] * pSpeech.probability
deltaS[gaussian] = pSpeech.delta
h1_test += speech_probability[k] // Q27
@ -460,8 +390,8 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
//
// Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
// Further, b0 and b1 are independent and on the average the two terms cancel.
val shifts_h0 = if (h0_test != 0) NormW32(h0_test) else 31
val shifts_h1 = if (h1_test != 0) NormW32(h1_test) else 31
val shifts_h0 = if (h0_test != 0) normSigned(h0_test) else 31
val shifts_h1 = if (h1_test != 0) normSigned(h1_test) else 31
val log_likelihood_ratio = shifts_h0 - shifts_h1
// Update [sum_log_likelihood_ratios] with spectrum weighting. This is
@ -481,7 +411,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
// High probability of noise. Assign conditional probabilities for each
// Gaussian in the GMM.
val tmp = (noise_probability[0] and 0xFFFFF000u.toInt()) shl 2 // Q29
ngprvec[channel] = DivW32W16(tmp, h0) // Q14
ngprvec[channel] = tmp safeDiv h0 // Q14
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel]
} else {
// Low noise probability. Assign conditional probability 1 to the first
@ -495,7 +425,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
// High probability of speech. Assign conditional probabilities for each
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
val tmp = (speech_probability[0] and 0xFFFFF000u.toInt()) shl 2 // Q29
sgprvec[channel] = DivW32W16(tmp, h1) // Q14
sgprvec[channel] = tmp safeDiv h1 // Q14
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel]
}
}
@ -589,9 +519,9 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
// 0.1 * Q20 / Q7 = Q13.
if (tmp2_s32 > 0) {
tmp_s16 = DivW32W16(tmp2_s32, ssk * 10)
tmp_s16 = tmp2_s32 safeDiv (ssk * 10)
} else {
tmp_s16 = DivW32W16(-tmp2_s32, ssk * 10)
tmp_s16 = -tmp2_s32 safeDiv (ssk * 10)
tmp_s16 = -tmp_s16
}
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
@ -621,9 +551,9 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
// Q20 / Q7 = Q13.
if (tmp1_s32 > 0) {
tmp_s16 = DivW32W16(tmp1_s32, nsk)
tmp_s16 = tmp1_s32 safeDiv nsk
} else {
tmp_s16 = DivW32W16(-tmp1_s32, nsk)
tmp_s16 = -tmp1_s32 safeDiv nsk
tmp_s16 = -tmp_s16
}
tmp_s16 += 32 // Rounding
@ -847,7 +777,7 @@ fun FindMinimum(self: VadInstT, feature_value: Int, channel: Int): Int {
}
}
tmp32 = (alpha + 1) * self.mean_value[channel]
tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median
tmp32 += (Short.MAX_VALUE - alpha) * current_median
tmp32 += 16384
self.mean_value[channel] = tmp32 shr 15
@ -992,7 +922,7 @@ fun SplitFilter(input: AudioBuffer, upper_state: MutableInt, lower_state: Mutabl
fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int {
assert(input.size > 0)
val energyResult = Energy(input)
val energyResult = getEnergy(input)
// [tot_rshifts] accumulates the number of right shifts performed on [energy].
var tot_rshifts = energyResult.rightShifts
// The [energy] will be normalized to 15 bits. We use unsigned integer because
@ -1005,7 +935,7 @@ fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int
// By construction, normalizing to 15 bits is equivalent with 17 leading
// zeros of an unsigned 32 bit value.
val normalizing_rshifts = 17 - NormU32(energy)
val normalizing_rshifts = 17 - normUnsigned(energy)
// In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
// (14 shl 10), which is what we initialize [log2_energy] with. For a more
// detailed derivations, see below.