Remove redundant semicolons
This commit is contained in:
parent
62c179863e
commit
00c19a26f2
|
@ -162,8 +162,8 @@ data class GaussianProbabilityResult(
|
|||
val delta: Int
|
||||
)
|
||||
|
||||
val kCompVar = 22005;
|
||||
val kLog2Exp = 5909; // log2(exp(1)) in Q12.
|
||||
val kCompVar = 22005
|
||||
val kLog2Exp = 5909 // log2(exp(1)) in Q12.
|
||||
|
||||
// Calculates the probability for [input], given that [input] comes from a
|
||||
// normal distribution with mean and standard deviation ([mean], [std]).
|
||||
|
@ -235,7 +235,7 @@ fun GaussianProbability(input: Int, mean: Int, std: Int): GaussianProbabilityRes
|
|||
exp_value = 0x0400 or (tmp16 and 0x03FF)
|
||||
tmp16 = tmp16 xor 0xFFFF
|
||||
tmp16 = tmp16 shr 10
|
||||
tmp16 += 1;
|
||||
tmp16 += 1
|
||||
// Get [exp_value] = exp(-[tmp32]) in Q10.
|
||||
exp_value = exp_value shr tmp16
|
||||
}
|
||||
|
@ -397,7 +397,7 @@ fun WeightedAverage(data: IntArray, channel: Int, offset: Int, weights: IntArray
|
|||
//
|
||||
// - returns : the VAD decision (0 - noise, 1 - speech).
|
||||
fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_length: Int): Int {
|
||||
var vadflag = 0;
|
||||
var vadflag = 0
|
||||
var tmp_s16: Int
|
||||
var tmp1_s16: Int
|
||||
var tmp2_s16: Int
|
||||
|
@ -409,7 +409,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
val noise_probability = IntArray(kNumGaussians)
|
||||
val speech_probability = IntArray(kNumGaussians)
|
||||
|
||||
assert(frame_length == 80);
|
||||
assert(frame_length == 80)
|
||||
|
||||
if (total_power > kMinEnergy) {
|
||||
// The signal power of current frame is large enough for processing. The
|
||||
|
@ -430,21 +430,21 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
var h0_test = 0
|
||||
var h1_test = 0
|
||||
for (k in 0 until kNumGaussians) {
|
||||
val gaussian = channel + k * kNumChannels;
|
||||
val gaussian = channel + k * kNumChannels
|
||||
|
||||
// Probability under H0, that is, probability of frame being noise.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
val pNoise = GaussianProbability(features[channel], self.noise_means[gaussian], self.noise_stds[gaussian])
|
||||
deltaN[gaussian] = pNoise.delta
|
||||
noise_probability[k] = kNoiseDataWeights[gaussian] * pNoise.probability
|
||||
h0_test += noise_probability[k]; // Q27
|
||||
h0_test += noise_probability[k] // Q27
|
||||
|
||||
// Probability under H1, that is, probability of frame being speech.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
val pSpeech = GaussianProbability(features[channel], self.speech_means[gaussian], self.speech_stds[gaussian])
|
||||
speech_probability[k] = kSpeechDataWeights[gaussian] * pSpeech.probability
|
||||
deltaS[gaussian] = pSpeech.delta
|
||||
h1_test += speech_probability[k]; // Q27
|
||||
h1_test += speech_probability[k] // Q27
|
||||
}
|
||||
|
||||
// Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
|
||||
|
@ -461,7 +461,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
// Further, b0 and b1 are independent and on the average the two terms cancel.
|
||||
val shifts_h0 = if (h0_test != 0) NormW32(h0_test) else 31
|
||||
val shifts_h1 = if (h1_test != 0) NormW32(h1_test) else 31
|
||||
val log_likelihood_ratio = shifts_h0 - shifts_h1;
|
||||
val log_likelihood_ratio = shifts_h0 - shifts_h1
|
||||
|
||||
// Update [sum_log_likelihood_ratios] with spectrum weighting. This is
|
||||
// used for the global VAD decision.
|
||||
|
@ -480,22 +480,22 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
// High probability of noise. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM.
|
||||
val tmp = (noise_probability[0] and 0xFFFFF000u.toInt()) shl 2 // Q29
|
||||
ngprvec[channel] = DivW32W16(tmp, h0); // Q14
|
||||
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
|
||||
ngprvec[channel] = DivW32W16(tmp, h0) // Q14
|
||||
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel]
|
||||
} else {
|
||||
// Low noise probability. Assign conditional probability 1 to the first
|
||||
// Gaussian and 0 to the rest (which is already set at initialization).
|
||||
ngprvec[channel] = 16384;
|
||||
ngprvec[channel] = 16384
|
||||
}
|
||||
|
||||
// Calculate local speech probabilities used later when updating the GMM.
|
||||
val h1 = (h1_test shr 12); // Q15
|
||||
val h1 = (h1_test shr 12) // Q15
|
||||
if (h1 > 0) {
|
||||
// High probability of speech. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
|
||||
val tmp = (speech_probability[0] and 0xFFFFF000u.toInt()) shl 2; // Q29
|
||||
val tmp = (speech_probability[0] and 0xFFFFF000u.toInt()) shl 2 // Q29
|
||||
sgprvec[channel] = DivW32W16(tmp, h1) // Q14
|
||||
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
|
||||
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel]
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -515,13 +515,13 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
for (k in 0 until kNumGaussians) {
|
||||
val gaussian = channel + k * kNumChannels
|
||||
|
||||
val nmk = self.noise_means[gaussian];
|
||||
val smk = self.speech_means[gaussian];
|
||||
var nsk = self.noise_stds[gaussian];
|
||||
var ssk = self.speech_stds[gaussian];
|
||||
val nmk = self.noise_means[gaussian]
|
||||
val smk = self.speech_means[gaussian]
|
||||
var nsk = self.noise_stds[gaussian]
|
||||
var ssk = self.speech_stds[gaussian]
|
||||
|
||||
// Update noise mean vector if the frame consists of noise only.
|
||||
var nmk2 = nmk;
|
||||
var nmk2 = nmk
|
||||
if (vadflag == 0) {
|
||||
// deltaN = (x-mu)/sigma^2
|
||||
// ngprvec[k] = |noise_probability[k]| /
|
||||
|
@ -535,7 +535,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
|
||||
// Long term correction of the noise mean.
|
||||
// Q8 - Q8 = Q8.
|
||||
val ndelt = (feature_minimum shl 4) - tmp1_s16;
|
||||
val ndelt = (feature_minimum shl 4) - tmp1_s16
|
||||
// Q7 + (Q8 * Q8) shr 9 = Q7.
|
||||
var nmk3 = nmk2 + ((ndelt * kBackEta) shr 9)
|
||||
|
||||
|
@ -548,7 +548,7 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
if (nmk3 > tmp_s16) {
|
||||
nmk3 = tmp_s16
|
||||
}
|
||||
self.noise_means[gaussian] = nmk3;
|
||||
self.noise_means[gaussian] = nmk3
|
||||
|
||||
if (vadflag != 0) {
|
||||
// Update speech mean vector:
|
||||
|
@ -561,76 +561,76 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
// Q14 * Q15 shr 21 = Q8.
|
||||
tmp_s16 = (delt * kSpeechUpdateConst) shr 21
|
||||
// Q7 + (Q8 shr 1) = Q7. With rounding.
|
||||
var smk2 = smk + ((tmp_s16 + 1) shr 1);
|
||||
var smk2 = smk + ((tmp_s16 + 1) shr 1)
|
||||
|
||||
// Control that the speech mean does not drift to much.
|
||||
val maxmu = maxspe + 640;
|
||||
val maxmu = maxspe + 640
|
||||
if (smk2 < kMinimumMean[k]) {
|
||||
smk2 = kMinimumMean[k];
|
||||
smk2 = kMinimumMean[k]
|
||||
}
|
||||
if (smk2 > maxmu) {
|
||||
smk2 = maxmu;
|
||||
smk2 = maxmu
|
||||
}
|
||||
self.speech_means[gaussian] = smk2; // Q7.
|
||||
self.speech_means[gaussian] = smk2 // Q7.
|
||||
|
||||
// (Q7 shr 3) = Q4. With rounding.
|
||||
tmp_s16 = ((smk + 4) shr 3);
|
||||
tmp_s16 = ((smk + 4) shr 3)
|
||||
|
||||
tmp_s16 = features[channel] - tmp_s16; // Q4
|
||||
tmp_s16 = features[channel] - tmp_s16 // Q4
|
||||
// (Q11 * Q4 shr 3) = Q12.
|
||||
var tmp1_s32 = (deltaS[gaussian] * tmp_s16) shr 3;
|
||||
var tmp2_s32 = tmp1_s32 - 4096;
|
||||
tmp_s16 = sgprvec[gaussian] shr 2;
|
||||
var tmp1_s32 = (deltaS[gaussian] * tmp_s16) shr 3
|
||||
var tmp2_s32 = tmp1_s32 - 4096
|
||||
tmp_s16 = sgprvec[gaussian] shr 2
|
||||
// (Q14 shr 2) * Q12 = Q24.
|
||||
tmp1_s32 = tmp_s16 * tmp2_s32;
|
||||
tmp1_s32 = tmp_s16 * tmp2_s32
|
||||
|
||||
tmp2_s32 = tmp1_s32 shr 4; // Q20
|
||||
tmp2_s32 = tmp1_s32 shr 4 // Q20
|
||||
|
||||
// 0.1 * Q20 / Q7 = Q13.
|
||||
if (tmp2_s32 > 0) {
|
||||
tmp_s16 = DivW32W16(tmp2_s32, ssk * 10);
|
||||
tmp_s16 = DivW32W16(tmp2_s32, ssk * 10)
|
||||
} else {
|
||||
tmp_s16 = DivW32W16(-tmp2_s32, ssk * 10);
|
||||
tmp_s16 = -tmp_s16;
|
||||
tmp_s16 = DivW32W16(-tmp2_s32, ssk * 10)
|
||||
tmp_s16 = -tmp_s16
|
||||
}
|
||||
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
|
||||
// Note that division by 4 equals shift by 2, hence,
|
||||
// (Q13 shr 8) = (Q13 shr 6) / 4 = Q7.
|
||||
tmp_s16 += 128; // Rounding.
|
||||
ssk += (tmp_s16 shr 8);
|
||||
tmp_s16 += 128 // Rounding.
|
||||
ssk += (tmp_s16 shr 8)
|
||||
if (ssk < kMinStd) {
|
||||
ssk = kMinStd;
|
||||
ssk = kMinStd
|
||||
}
|
||||
self.speech_stds[gaussian] = ssk;
|
||||
self.speech_stds[gaussian] = ssk
|
||||
} else {
|
||||
// Update GMM variance vectors.
|
||||
// deltaN * (features[channel] - nmk) - 1
|
||||
// Q4 - (Q7 shr 3) = Q4.
|
||||
tmp_s16 = features[channel] - (nmk shr 3);
|
||||
tmp_s16 = features[channel] - (nmk shr 3)
|
||||
// (Q11 * Q4 shr 3) = Q12.
|
||||
var tmp1_s32 = (deltaN[gaussian] * tmp_s16) shr 3;
|
||||
tmp1_s32 -= 4096;
|
||||
var tmp1_s32 = (deltaN[gaussian] * tmp_s16) shr 3
|
||||
tmp1_s32 -= 4096
|
||||
|
||||
// (Q14 shr 2) * Q12 = Q24.
|
||||
tmp_s16 = (ngprvec[gaussian] + 2) shr 2;
|
||||
val tmp2_s32 = tmp_s16 * tmp1_s32;
|
||||
tmp_s16 = (ngprvec[gaussian] + 2) shr 2
|
||||
val tmp2_s32 = tmp_s16 * tmp1_s32
|
||||
// Q20 * approx 0.001 (2^-10=0.0009766), hence,
|
||||
// (Q24 shr 14) = (Q24 shr 4) / 2^10 = Q20.
|
||||
tmp1_s32 = tmp2_s32 shr 14;
|
||||
tmp1_s32 = tmp2_s32 shr 14
|
||||
|
||||
// Q20 / Q7 = Q13.
|
||||
if (tmp1_s32 > 0) {
|
||||
tmp_s16 = DivW32W16(tmp1_s32, nsk);
|
||||
tmp_s16 = DivW32W16(tmp1_s32, nsk)
|
||||
} else {
|
||||
tmp_s16 = DivW32W16(-tmp1_s32, nsk);
|
||||
tmp_s16 = -tmp_s16;
|
||||
tmp_s16 = DivW32W16(-tmp1_s32, nsk)
|
||||
tmp_s16 = -tmp_s16
|
||||
}
|
||||
tmp_s16 += 32; // Rounding
|
||||
nsk += tmp_s16 shr 6; // Q13 shr 6 = Q7.
|
||||
tmp_s16 += 32 // Rounding
|
||||
nsk += tmp_s16 shr 6 // Q13 shr 6 = Q7.
|
||||
if (nsk < kMinStd) {
|
||||
nsk = kMinStd;
|
||||
nsk = kMinStd
|
||||
}
|
||||
self.noise_stds[gaussian] = nsk;
|
||||
self.noise_stds[gaussian] = nsk
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -643,9 +643,9 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
|
||||
// [diff] = "global" speech mean - "global" noise mean.
|
||||
// (Q14 shr 9) - (Q14 shr 9) = Q5.
|
||||
val diff = (speech_global_mean shr 9) - (noise_global_mean shr 9);
|
||||
val diff = (speech_global_mean shr 9) - (noise_global_mean shr 9)
|
||||
if (diff < kMinimumDifference[channel]) {
|
||||
tmp_s16 = kMinimumDifference[channel] - diff;
|
||||
tmp_s16 = kMinimumDifference[channel] - diff
|
||||
|
||||
// [tmp1_s16] = ~0.8 * (kMinimumDifference - diff) in Q7.
|
||||
// [tmp2_s16] = ~0.2 * (kMinimumDifference - diff) in Q7.
|
||||
|
@ -664,53 +664,53 @@ fun GmmProbability(self: VadInstT, features: List<Int>, total_power: Int, frame_
|
|||
}
|
||||
|
||||
// Control that the speech & noise means do not drift to much.
|
||||
maxspe = kMaximumSpeech[channel];
|
||||
maxspe = kMaximumSpeech[channel]
|
||||
tmp2_s16 = speech_global_mean shr 7
|
||||
if (tmp2_s16 > maxspe) {
|
||||
// Upper limit of speech model.
|
||||
tmp2_s16 -= maxspe;
|
||||
tmp2_s16 -= maxspe
|
||||
|
||||
for (k in 0 until kNumGaussians) {
|
||||
self.speech_means[channel + k * kNumChannels] -= tmp2_s16;
|
||||
self.speech_means[channel + k * kNumChannels] -= tmp2_s16
|
||||
}
|
||||
}
|
||||
|
||||
tmp2_s16 = noise_global_mean shr 7
|
||||
if (tmp2_s16 > kMaximumNoise[channel]) {
|
||||
tmp2_s16 -= kMaximumNoise[channel];
|
||||
tmp2_s16 -= kMaximumNoise[channel]
|
||||
|
||||
for (k in 0 until kNumGaussians) {
|
||||
self.noise_means[channel + k * kNumChannels] -= tmp2_s16;
|
||||
self.noise_means[channel + k * kNumChannels] -= tmp2_s16
|
||||
}
|
||||
}
|
||||
}
|
||||
self.frame_counter++;
|
||||
self.frame_counter++
|
||||
}
|
||||
|
||||
// Smooth with respect to transition hysteresis.
|
||||
if (vadflag == 0) {
|
||||
if (self.over_hang > 0) {
|
||||
vadflag = 2 + self.over_hang;
|
||||
self.over_hang--;
|
||||
vadflag = 2 + self.over_hang
|
||||
self.over_hang--
|
||||
}
|
||||
self.num_of_speech = 0;
|
||||
self.num_of_speech = 0
|
||||
} else {
|
||||
self.num_of_speech++;
|
||||
self.num_of_speech++
|
||||
if (self.num_of_speech > kMaxSpeechFrames) {
|
||||
self.num_of_speech = kMaxSpeechFrames;
|
||||
self.over_hang = self.over_hang_max_2;
|
||||
self.num_of_speech = kMaxSpeechFrames
|
||||
self.over_hang = self.over_hang_max_2
|
||||
} else {
|
||||
self.over_hang = self.over_hang_max_1;
|
||||
self.over_hang = self.over_hang_max_1
|
||||
}
|
||||
}
|
||||
return vadflag;
|
||||
return vadflag
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/vad/vad_sp.c
|
||||
|
||||
val kSmoothingDown = 6553; // 0.2 in Q15.
|
||||
val kSmoothingUp = 32439; // 0.99 in Q15.
|
||||
val kSmoothingDown = 6553 // 0.2 in Q15.
|
||||
val kSmoothingUp = 32439 // 0.99 in Q15.
|
||||
|
||||
// Updates and returns the smoothed feature minimum. As minimum we use the
|
||||
// median of the five smallest feature values in a 100 frames long window.
|
||||
|
@ -731,9 +731,9 @@ val kSmoothingUp = 32439; // 0.99 in Q15.
|
|||
// of the five smallest values.
|
||||
fun FindMinimum(self: VadInstT, feature_value: Int, channel: Int): Int {
|
||||
var position = -1
|
||||
var current_median = 1600;
|
||||
var alpha = 0;
|
||||
var tmp32 = 0;
|
||||
var current_median = 1600
|
||||
var alpha = 0
|
||||
var tmp32 = 0
|
||||
val offset = channel shl 4
|
||||
|
||||
// Accessor for the age of each value of the [channel]
|
||||
|
@ -748,21 +748,21 @@ fun FindMinimum(self: VadInstT, feature_value: Int, channel: Int): Int {
|
|||
inline operator fun set(i: Int, value: Int) { self.low_value_vector[offset + i] = value }
|
||||
}
|
||||
|
||||
assert(channel < kNumChannels);
|
||||
assert(channel < kNumChannels)
|
||||
|
||||
// Each value in [smallest_values] is getting 1 loop older. Update [age], and
|
||||
// remove old values.
|
||||
for (i in 0 until 16) {
|
||||
if (age[i] != 100) {
|
||||
age[i]++;
|
||||
age[i]++
|
||||
} else {
|
||||
// Too old value. Remove from memory and shift larger values downwards.
|
||||
for (j in i until 16) {
|
||||
smallest_values[j] = smallest_values[j + 1];
|
||||
age[j] = age[j + 1];
|
||||
smallest_values[j] = smallest_values[j + 1]
|
||||
age[j] = age[j + 1]
|
||||
}
|
||||
age[15] = 101;
|
||||
smallest_values[15] = 10000;
|
||||
age[15] = 101
|
||||
smallest_values[15] = 10000
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -773,49 +773,49 @@ fun FindMinimum(self: VadInstT, feature_value: Int, channel: Int): Int {
|
|||
if (feature_value < smallest_values[3]) {
|
||||
if (feature_value < smallest_values[1]) {
|
||||
if (feature_value < smallest_values[0]) {
|
||||
position = 0;
|
||||
position = 0
|
||||
} else {
|
||||
position = 1;
|
||||
position = 1
|
||||
}
|
||||
} else if (feature_value < smallest_values[2]) {
|
||||
position = 2;
|
||||
position = 2
|
||||
} else {
|
||||
position = 3;
|
||||
position = 3
|
||||
}
|
||||
} else if (feature_value < smallest_values[5]) {
|
||||
if (feature_value < smallest_values[4]) {
|
||||
position = 4;
|
||||
position = 4
|
||||
} else {
|
||||
position = 5;
|
||||
position = 5
|
||||
}
|
||||
} else if (feature_value < smallest_values[6]) {
|
||||
position = 6;
|
||||
position = 6
|
||||
} else {
|
||||
position = 7;
|
||||
position = 7
|
||||
}
|
||||
} else if (feature_value < smallest_values[15]) {
|
||||
if (feature_value < smallest_values[11]) {
|
||||
if (feature_value < smallest_values[9]) {
|
||||
if (feature_value < smallest_values[8]) {
|
||||
position = 8;
|
||||
position = 8
|
||||
} else {
|
||||
position = 9;
|
||||
position = 9
|
||||
}
|
||||
} else if (feature_value < smallest_values[10]) {
|
||||
position = 10;
|
||||
position = 10
|
||||
} else {
|
||||
position = 11;
|
||||
position = 11
|
||||
}
|
||||
} else if (feature_value < smallest_values[13]) {
|
||||
if (feature_value < smallest_values[12]) {
|
||||
position = 12;
|
||||
position = 12
|
||||
} else {
|
||||
position = 13;
|
||||
position = 13
|
||||
}
|
||||
} else if (feature_value < smallest_values[14]) {
|
||||
position = 14;
|
||||
position = 14
|
||||
} else {
|
||||
position = 15;
|
||||
position = 15
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -823,42 +823,42 @@ fun FindMinimum(self: VadInstT, feature_value: Int, channel: Int): Int {
|
|||
// and shift larger values up.
|
||||
if (position > -1) {
|
||||
for (i in 15 downTo position + 1) {
|
||||
smallest_values[i] = smallest_values[i - 1];
|
||||
age[i] = age[i - 1];
|
||||
smallest_values[i] = smallest_values[i - 1]
|
||||
age[i] = age[i - 1]
|
||||
}
|
||||
smallest_values[position] = feature_value;
|
||||
age[position] = 1;
|
||||
smallest_values[position] = feature_value
|
||||
age[position] = 1
|
||||
}
|
||||
|
||||
// Get [current_median].
|
||||
if (self.frame_counter > 2) {
|
||||
current_median = smallest_values[2];
|
||||
current_median = smallest_values[2]
|
||||
} else if (self.frame_counter > 0) {
|
||||
current_median = smallest_values[0];
|
||||
current_median = smallest_values[0]
|
||||
}
|
||||
|
||||
// Smooth the median value.
|
||||
if (self.frame_counter > 0) {
|
||||
if (current_median < self.mean_value[channel]) {
|
||||
alpha = kSmoothingDown; // 0.2 in Q15.
|
||||
alpha = kSmoothingDown // 0.2 in Q15.
|
||||
} else {
|
||||
alpha = kSmoothingUp; // 0.99 in Q15.
|
||||
alpha = kSmoothingUp // 0.99 in Q15.
|
||||
}
|
||||
}
|
||||
tmp32 = (alpha + 1) * self.mean_value[channel];
|
||||
tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median;
|
||||
tmp32 += 16384;
|
||||
tmp32 = (alpha + 1) * self.mean_value[channel]
|
||||
tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median
|
||||
tmp32 += 16384
|
||||
self.mean_value[channel] = tmp32 shr 15
|
||||
|
||||
return self.mean_value[channel];
|
||||
return self.mean_value[channel]
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// webrtc/common_audio/vad/vad_filterbank.c
|
||||
|
||||
// Constants used in LogOfEnergy().
|
||||
val kLogConst = 24660; // 160*log10(2) in Q9.
|
||||
val kLogEnergyIntPart = 14336; // 14 in Q10
|
||||
val kLogConst = 24660 // 160*log10(2) in Q9.
|
||||
val kLogEnergyIntPart = 14336 // 14 in Q10
|
||||
|
||||
// Coefficients used by HighPassFilter, Q14.
|
||||
val kHpZeroCoefs = intArrayOf(6631, -13262, 6631)
|
||||
|
@ -893,15 +893,15 @@ fun HighPassFilter(input: AudioBuffer, filter_state: IntArray): AudioBuffer {
|
|||
for (i in 0 until input.size) {
|
||||
// All-zero section (filter coefficients in Q14).
|
||||
var tmp32 = kHpZeroCoefs[0] * input[i]
|
||||
tmp32 += kHpZeroCoefs[1] * filter_state[0];
|
||||
tmp32 += kHpZeroCoefs[2] * filter_state[1];
|
||||
filter_state[1] = filter_state[0];
|
||||
tmp32 += kHpZeroCoefs[1] * filter_state[0]
|
||||
tmp32 += kHpZeroCoefs[2] * filter_state[1]
|
||||
filter_state[1] = filter_state[0]
|
||||
filter_state[0] = input[i].toInt()
|
||||
|
||||
// All-pole section (filter coefficients in Q14).
|
||||
tmp32 -= kHpPoleCoefs[1] * filter_state[2];
|
||||
tmp32 -= kHpPoleCoefs[2] * filter_state[3];
|
||||
filter_state[3] = filter_state[2];
|
||||
tmp32 -= kHpPoleCoefs[1] * filter_state[2]
|
||||
tmp32 -= kHpPoleCoefs[2] * filter_state[3]
|
||||
filter_state[3] = filter_state[2]
|
||||
filter_state[2] = tmp32 shr 14
|
||||
result[i] = filter_state[2].toShort()
|
||||
}
|
||||
|
@ -931,8 +931,8 @@ fun AllPassFilter(input: AudioBuffer, filter_coefficient: Int, filter_state: Mut
|
|||
val tmp32 = state32 + filter_coefficient * input[i]
|
||||
val tmp16 = tmp32 shr 16 // Q(-1)
|
||||
result[i / 2] = tmp16.toShort()
|
||||
state32 = (input[i] * (1 shl 14)) - filter_coefficient * tmp16; // Q14
|
||||
state32 *= 2; // Q15.
|
||||
state32 = (input[i] * (1 shl 14)) - filter_coefficient * tmp16 // Q14
|
||||
state32 *= 2 // Q15.
|
||||
}
|
||||
filter_state.setValue(state32 shr 16) // Q(-1)
|
||||
|
||||
|
@ -989,7 +989,7 @@ fun SplitFilter(input: AudioBuffer, upper_state: MutableInt, lower_state: Mutabl
|
|||
// [total_energy] <= [kMinEnergy].
|
||||
// - log_energy [o] : 10 * log10("energy of [data_in]") given in Q4.
|
||||
fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int {
|
||||
assert(input.size > 0);
|
||||
assert(input.size > 0)
|
||||
|
||||
val energyResult = Energy(input)
|
||||
// [tot_rshifts] accumulates the number of right shifts performed on [energy].
|
||||
|
@ -1004,13 +1004,13 @@ fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int
|
|||
|
||||
// By construction, normalizing to 15 bits is equivalent with 17 leading
|
||||
// zeros of an unsigned 32 bit value.
|
||||
val normalizing_rshifts = 17 - NormU32(energy);
|
||||
val normalizing_rshifts = 17 - NormU32(energy)
|
||||
// In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
|
||||
// (14 shl 10), which is what we initialize [log2_energy] with. For a more
|
||||
// detailed derivations, see below.
|
||||
var log2_energy = kLogEnergyIntPart;
|
||||
var log2_energy = kLogEnergyIntPart
|
||||
|
||||
tot_rshifts += normalizing_rshifts;
|
||||
tot_rshifts += normalizing_rshifts
|
||||
// Normalize [energy] to 15 bits.
|
||||
// [tot_rshifts] is now the total number of right shifts performed on
|
||||
// [energy] after normalization. This means that [energy] is in
|
||||
|
@ -1048,10 +1048,10 @@ fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int
|
|||
var log_energy = (((kLogConst * log2_energy) shr 19) + (tot_rshifts * kLogConst) shr 9)
|
||||
|
||||
if (log_energy < 0) {
|
||||
log_energy = 0;
|
||||
log_energy = 0
|
||||
}
|
||||
|
||||
log_energy += offset;
|
||||
log_energy += offset
|
||||
|
||||
// Update the approximate [total_energy] with the energy of [data_in], if
|
||||
// [total_energy] has not exceeded [kMinEnergy]. [total_energy] is used as an
|
||||
|
@ -1066,7 +1066,7 @@ fun LogOfEnergy(input: AudioBuffer, offset: Int, total_energy: MutableInt): Int
|
|||
// right shifted [energy] will fit in an Int. In addition, adding the
|
||||
// value to [total_energy] is wrap around safe as long as
|
||||
// [kMinEnergy] < 8192.
|
||||
total_energy.add((energy shr -tot_rshifts).toInt()); // Q0.
|
||||
total_energy.add((energy shr -tot_rshifts).toInt()) // Q0.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1108,7 +1108,7 @@ fun CalculateFeatures(self: VadInstT, input: AudioBuffer): FeatureResult {
|
|||
var frequency_band = 0
|
||||
val `0 to 4000 Hz` = input
|
||||
val (`2000 to 4000 Hz`, `0 to 2000 Hz`) =
|
||||
SplitFilter(`0 to 4000 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band]);
|
||||
SplitFilter(`0 to 4000 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band])
|
||||
|
||||
// For the upper band (2000 to 4000 Hz) split at 3000 Hz and downsample.
|
||||
frequency_band = 1
|
||||
|
@ -1116,17 +1116,17 @@ fun CalculateFeatures(self: VadInstT, input: AudioBuffer): FeatureResult {
|
|||
SplitFilter(`2000 to 4000 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band])
|
||||
|
||||
// For the lower band (0 to 2000 Hz) split at 1000 Hz and downsample.
|
||||
frequency_band = 2;
|
||||
frequency_band = 2
|
||||
val (`1000 to 2000 Hz`, `0 to 1000 Hz`) =
|
||||
SplitFilter(`0 to 2000 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band])
|
||||
|
||||
// For the lower band (0 to 1000 Hz) split at 500 Hz and downsample.
|
||||
frequency_band = 3;
|
||||
frequency_band = 3
|
||||
val (`500 to 1000 Hz`, `0 to 500 Hz`) =
|
||||
SplitFilter(`0 to 1000 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band]);
|
||||
SplitFilter(`0 to 1000 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band])
|
||||
|
||||
// For the lower band (0 t0 500 Hz) split at 250 Hz and downsample.
|
||||
frequency_band = 4;
|
||||
frequency_band = 4
|
||||
val (`250 to 500 Hz`, `0 to 250 Hz`) =
|
||||
SplitFilter(`0 to 500 Hz`, self.upper_state[frequency_band], self.lower_state[frequency_band])
|
||||
|
||||
|
@ -1139,7 +1139,7 @@ fun CalculateFeatures(self: VadInstT, input: AudioBuffer): FeatureResult {
|
|||
val `energy in 1000 to 2000 Hz` = LogOfEnergy(`1000 to 2000 Hz`, kOffsetVector[3], total_energy)
|
||||
val `energy in 500 to 1000 Hz` = LogOfEnergy(`500 to 1000 Hz`, kOffsetVector[2], total_energy)
|
||||
val `energy in 250 to 500 Hz` = LogOfEnergy(`250 to 500 Hz`, kOffsetVector[1], total_energy)
|
||||
val `energy in 50 to 250 Hz` = LogOfEnergy(`80 to 250 Hz`, kOffsetVector[0], total_energy);
|
||||
val `energy in 50 to 250 Hz` = LogOfEnergy(`80 to 250 Hz`, kOffsetVector[0], total_energy)
|
||||
|
||||
val features = listOf(
|
||||
`energy in 50 to 250 Hz`,
|
||||
|
@ -1179,12 +1179,12 @@ fun CalculateFeatures(self: VadInstT, input: AudioBuffer): FeatureResult {
|
|||
*/
|
||||
fun CalcVad8khz(inst: VadInstT, speech_frame: AudioBuffer): Int {
|
||||
// Get power in the bands
|
||||
val (features, totalEnergy) = CalculateFeatures(inst, speech_frame);
|
||||
val (features, totalEnergy) = CalculateFeatures(inst, speech_frame)
|
||||
|
||||
// Make a VAD
|
||||
inst.vad = GmmProbability(inst, features, totalEnergy, speech_frame.size);
|
||||
inst.vad = GmmProbability(inst, features, totalEnergy, speech_frame.size)
|
||||
|
||||
return inst.vad;
|
||||
return inst.vad
|
||||
}
|
||||
|
||||
// Calculates a VAD decision for the [audio_frame]. For valid sampling rates
|
||||
|
@ -1202,6 +1202,6 @@ fun CalcVad8khz(inst: VadInstT, speech_frame: AudioBuffer): Int {
|
|||
fun ProcessVad(self: VadInstT, fs: Int, audio_frame: AudioBuffer): Boolean {
|
||||
assert(fs == 8000)
|
||||
|
||||
val vad = CalcVad8khz(self, audio_frame);
|
||||
val vad = CalcVad8khz(self, audio_frame)
|
||||
return vad != 0
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue