384 lines
12 KiB
C++
384 lines
12 KiB
C++
|
/*
|
||
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "webrtc/base/common.h"
|
||
|
#include "webrtc/base/event.h"
|
||
|
#include "webrtc/base/fakeclock.h"
|
||
|
#include "webrtc/base/gunit.h"
|
||
|
#include "webrtc/base/helpers.h"
|
||
|
#include "webrtc/base/thread.h"
|
||
|
#include "webrtc/base/timeutils.h"
|
||
|
|
||
|
namespace rtc {
|
||
|
|
||
|
TEST(TimeTest, TimeInMs) {
|
||
|
int64_t ts_earlier = TimeMillis();
|
||
|
Thread::SleepMs(100);
|
||
|
int64_t ts_now = TimeMillis();
|
||
|
// Allow for the thread to wakeup ~20ms early.
|
||
|
EXPECT_GE(ts_now, ts_earlier + 80);
|
||
|
// Make sure the Time is not returning in smaller unit like microseconds.
|
||
|
EXPECT_LT(ts_now, ts_earlier + 1000);
|
||
|
}
|
||
|
|
||
|
TEST(TimeTest, Intervals) {
|
||
|
int64_t ts_earlier = TimeMillis();
|
||
|
int64_t ts_later = TimeAfter(500);
|
||
|
|
||
|
// We can't depend on ts_later and ts_earlier to be exactly 500 apart
|
||
|
// since time elapses between the calls to TimeMillis() and TimeAfter(500)
|
||
|
EXPECT_LE(500, TimeDiff(ts_later, ts_earlier));
|
||
|
EXPECT_GE(-500, TimeDiff(ts_earlier, ts_later));
|
||
|
|
||
|
// Time has elapsed since ts_earlier
|
||
|
EXPECT_GE(TimeSince(ts_earlier), 0);
|
||
|
|
||
|
// ts_earlier is earlier than now, so TimeUntil ts_earlier is -ve
|
||
|
EXPECT_LE(TimeUntil(ts_earlier), 0);
|
||
|
|
||
|
// ts_later likely hasn't happened yet, so TimeSince could be -ve
|
||
|
// but within 500
|
||
|
EXPECT_GE(TimeSince(ts_later), -500);
|
||
|
|
||
|
// TimeUntil ts_later is at most 500
|
||
|
EXPECT_LE(TimeUntil(ts_later), 500);
|
||
|
}
|
||
|
|
||
|
TEST(TimeTest, TestTimeDiff64) {
|
||
|
int64_t ts_diff = 100;
|
||
|
int64_t ts_earlier = rtc::TimeMillis();
|
||
|
int64_t ts_later = ts_earlier + ts_diff;
|
||
|
EXPECT_EQ(ts_diff, rtc::TimeDiff(ts_later, ts_earlier));
|
||
|
EXPECT_EQ(-ts_diff, rtc::TimeDiff(ts_earlier, ts_later));
|
||
|
}
|
||
|
|
||
|
class TimestampWrapAroundHandlerTest : public testing::Test {
|
||
|
public:
|
||
|
TimestampWrapAroundHandlerTest() {}
|
||
|
|
||
|
protected:
|
||
|
TimestampWrapAroundHandler wraparound_handler_;
|
||
|
};
|
||
|
|
||
|
TEST_F(TimestampWrapAroundHandlerTest, Unwrap) {
|
||
|
// Start value.
|
||
|
int64_t ts = 2;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
|
||
|
// Wrap backwards.
|
||
|
ts = -2;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
|
||
|
// Forward to 2 again.
|
||
|
ts = 2;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
|
||
|
// Max positive skip ahead, until max value (0xffffffff).
|
||
|
for (uint32_t i = 0; i <= 0xf; ++i) {
|
||
|
ts = (i << 28) + 0x0fffffff;
|
||
|
EXPECT_EQ(
|
||
|
ts, wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
}
|
||
|
|
||
|
// Wrap around.
|
||
|
ts += 2;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
|
||
|
// Max wrap backward...
|
||
|
ts -= 0x0fffffff;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
|
||
|
// ...and back again.
|
||
|
ts += 0x0fffffff;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
}
|
||
|
|
||
|
TEST_F(TimestampWrapAroundHandlerTest, NoNegativeStart) {
|
||
|
int64_t ts = 0xfffffff0;
|
||
|
EXPECT_EQ(ts,
|
||
|
wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff)));
|
||
|
}
|
||
|
|
||
|
class TmToSeconds : public testing::Test {
|
||
|
public:
|
||
|
TmToSeconds() {
|
||
|
// Set use of the test RNG to get deterministic expiration timestamp.
|
||
|
rtc::SetRandomTestMode(true);
|
||
|
}
|
||
|
~TmToSeconds() {
|
||
|
// Put it back for the next test.
|
||
|
rtc::SetRandomTestMode(false);
|
||
|
}
|
||
|
|
||
|
void TestTmToSeconds(int times) {
|
||
|
static char mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
||
|
for (int i = 0; i < times; i++) {
|
||
|
|
||
|
// First generate something correct and check that TmToSeconds is happy.
|
||
|
int year = rtc::CreateRandomId() % 400 + 1970;
|
||
|
|
||
|
bool leap_year = false;
|
||
|
if (year % 4 == 0)
|
||
|
leap_year = true;
|
||
|
if (year % 100 == 0)
|
||
|
leap_year = false;
|
||
|
if (year % 400 == 0)
|
||
|
leap_year = true;
|
||
|
|
||
|
std::tm tm;
|
||
|
tm.tm_year = year - 1900; // std::tm is year 1900 based.
|
||
|
tm.tm_mon = rtc::CreateRandomId() % 12;
|
||
|
tm.tm_mday = rtc::CreateRandomId() % mdays[tm.tm_mon] + 1;
|
||
|
tm.tm_hour = rtc::CreateRandomId() % 24;
|
||
|
tm.tm_min = rtc::CreateRandomId() % 60;
|
||
|
tm.tm_sec = rtc::CreateRandomId() % 60;
|
||
|
int64_t t = rtc::TmToSeconds(tm);
|
||
|
EXPECT_TRUE(t >= 0);
|
||
|
|
||
|
// Now damage a random field and check that TmToSeconds is unhappy.
|
||
|
switch (rtc::CreateRandomId() % 11) {
|
||
|
case 0:
|
||
|
tm.tm_year = 1969 - 1900;
|
||
|
break;
|
||
|
case 1:
|
||
|
tm.tm_mon = -1;
|
||
|
break;
|
||
|
case 2:
|
||
|
tm.tm_mon = 12;
|
||
|
break;
|
||
|
case 3:
|
||
|
tm.tm_mday = 0;
|
||
|
break;
|
||
|
case 4:
|
||
|
tm.tm_mday = mdays[tm.tm_mon] + (leap_year && tm.tm_mon == 1) + 1;
|
||
|
break;
|
||
|
case 5:
|
||
|
tm.tm_hour = -1;
|
||
|
break;
|
||
|
case 6:
|
||
|
tm.tm_hour = 24;
|
||
|
break;
|
||
|
case 7:
|
||
|
tm.tm_min = -1;
|
||
|
break;
|
||
|
case 8:
|
||
|
tm.tm_min = 60;
|
||
|
break;
|
||
|
case 9:
|
||
|
tm.tm_sec = -1;
|
||
|
break;
|
||
|
case 10:
|
||
|
tm.tm_sec = 60;
|
||
|
break;
|
||
|
}
|
||
|
EXPECT_EQ(rtc::TmToSeconds(tm), -1);
|
||
|
}
|
||
|
// Check consistency with the system gmtime_r. With time_t, we can only
|
||
|
// portably test dates until 2038, which is achieved by the % 0x80000000.
|
||
|
for (int i = 0; i < times; i++) {
|
||
|
time_t t = rtc::CreateRandomId() % 0x80000000;
|
||
|
#if defined(WEBRTC_WIN)
|
||
|
std::tm* tm = std::gmtime(&t);
|
||
|
EXPECT_TRUE(tm);
|
||
|
EXPECT_TRUE(rtc::TmToSeconds(*tm) == t);
|
||
|
#else
|
||
|
std::tm tm;
|
||
|
EXPECT_TRUE(gmtime_r(&t, &tm));
|
||
|
EXPECT_TRUE(rtc::TmToSeconds(tm) == t);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST_F(TmToSeconds, TestTmToSeconds) {
|
||
|
TestTmToSeconds(100000);
|
||
|
}
|
||
|
|
||
|
TEST(TimeDelta, FromAndTo) {
|
||
|
EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000));
|
||
|
EXPECT_TRUE(TimeDelta::FromMilliseconds(3) ==
|
||
|
TimeDelta::FromMicroseconds(3000));
|
||
|
EXPECT_TRUE(TimeDelta::FromMicroseconds(4) ==
|
||
|
TimeDelta::FromNanoseconds(4000));
|
||
|
EXPECT_EQ(13, TimeDelta::FromSeconds(13).ToSeconds());
|
||
|
EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).ToMilliseconds());
|
||
|
EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).ToMicroseconds());
|
||
|
EXPECT_EQ(13, TimeDelta::FromNanoseconds(13).ToNanoseconds());
|
||
|
}
|
||
|
|
||
|
TEST(TimeDelta, ComparisonOperators) {
|
||
|
EXPECT_LT(TimeDelta::FromSeconds(1), TimeDelta::FromSeconds(2));
|
||
|
EXPECT_EQ(TimeDelta::FromSeconds(3), TimeDelta::FromSeconds(3));
|
||
|
EXPECT_GT(TimeDelta::FromSeconds(5), TimeDelta::FromSeconds(4));
|
||
|
}
|
||
|
|
||
|
TEST(TimeDelta, NumericOperators) {
|
||
|
double d = 0.5;
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) * d);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) / d);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) *= d);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) /= d);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
d * TimeDelta::FromMilliseconds(1000));
|
||
|
|
||
|
float f = 0.5;
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) * f);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) / f);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) *= f);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) /= f);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
f * TimeDelta::FromMilliseconds(1000));
|
||
|
|
||
|
int i = 2;
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) * i);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) / i);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) *= i);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) /= i);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
i * TimeDelta::FromMilliseconds(1000));
|
||
|
|
||
|
int64_t i64 = 2;
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) * i64);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) / i64);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) *= i64);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) /= i64);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
i64 * TimeDelta::FromMilliseconds(1000));
|
||
|
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) * 0.5);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) / 0.5);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) *= 0.5);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) /= 0.5);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
0.5 * TimeDelta::FromMilliseconds(1000));
|
||
|
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) * 2);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) / 2);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
TimeDelta::FromMilliseconds(1000) *= 2);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
|
||
|
TimeDelta::FromMilliseconds(1000) /= 2);
|
||
|
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
|
||
|
2 * TimeDelta::FromMilliseconds(1000));
|
||
|
}
|
||
|
|
||
|
// Test that all the time functions exposed by TimeUtils get time from the
|
||
|
// fake clock when it's set.
|
||
|
TEST(FakeClock, TimeFunctionsUseFakeClock) {
|
||
|
FakeClock clock;
|
||
|
SetClockForTesting(&clock);
|
||
|
|
||
|
clock.SetTimeNanos(987654321u);
|
||
|
EXPECT_EQ(987u, Time32());
|
||
|
EXPECT_EQ(987, TimeMillis());
|
||
|
EXPECT_EQ(987654u, TimeMicros());
|
||
|
EXPECT_EQ(987654321u, TimeNanos());
|
||
|
EXPECT_EQ(1000u, TimeAfter(13));
|
||
|
|
||
|
SetClockForTesting(nullptr);
|
||
|
// After it's unset, we should get a normal time.
|
||
|
EXPECT_NE(987, TimeMillis());
|
||
|
}
|
||
|
|
||
|
TEST(FakeClock, InitialTime) {
|
||
|
FakeClock clock;
|
||
|
EXPECT_EQ(0u, clock.TimeNanos());
|
||
|
}
|
||
|
|
||
|
TEST(FakeClock, SetTimeNanos) {
|
||
|
FakeClock clock;
|
||
|
clock.SetTimeNanos(123u);
|
||
|
EXPECT_EQ(123u, clock.TimeNanos());
|
||
|
clock.SetTimeNanos(456u);
|
||
|
EXPECT_EQ(456u, clock.TimeNanos());
|
||
|
}
|
||
|
|
||
|
TEST(FakeClock, AdvanceTime) {
|
||
|
FakeClock clock;
|
||
|
clock.AdvanceTime(TimeDelta::FromNanoseconds(1111u));
|
||
|
EXPECT_EQ(1111u, clock.TimeNanos());
|
||
|
clock.AdvanceTime(TimeDelta::FromMicroseconds(2222u));
|
||
|
EXPECT_EQ(2223111u, clock.TimeNanos());
|
||
|
clock.AdvanceTime(TimeDelta::FromMilliseconds(3333u));
|
||
|
EXPECT_EQ(3335223111u, clock.TimeNanos());
|
||
|
clock.AdvanceTime(TimeDelta::FromSeconds(4444u));
|
||
|
EXPECT_EQ(4447335223111u, clock.TimeNanos());
|
||
|
}
|
||
|
|
||
|
// When the clock is advanced, threads that are waiting in a socket select
|
||
|
// should wake up and look at the new time. This allows tests using the
|
||
|
// fake clock to run much faster, if the test is bound by time constraints
|
||
|
// (such as a test for a STUN ping timeout).
|
||
|
TEST(FakeClock, SettingTimeWakesThreads) {
|
||
|
int64_t real_start_time_ms = TimeMillis();
|
||
|
|
||
|
FakeClock clock;
|
||
|
SetClockForTesting(&clock);
|
||
|
|
||
|
Thread worker;
|
||
|
worker.Start();
|
||
|
|
||
|
// Post an event that won't be executed for 10 seconds.
|
||
|
Event message_handler_dispatched(false, false);
|
||
|
auto functor = [&message_handler_dispatched] {
|
||
|
message_handler_dispatched.Set();
|
||
|
};
|
||
|
FunctorMessageHandler<void, decltype(functor)> handler(functor);
|
||
|
worker.PostDelayed(RTC_FROM_HERE, 60000, &handler);
|
||
|
|
||
|
// Wait for a bit for the worker thread to be started and enter its socket
|
||
|
// select(). Otherwise this test would be trivial since the worker thread
|
||
|
// would process the event as soon as it was started.
|
||
|
Thread::Current()->SleepMs(1000);
|
||
|
|
||
|
// Advance the fake clock, expecting the worker thread to wake up
|
||
|
// and dispatch the message instantly.
|
||
|
clock.AdvanceTime(TimeDelta::FromSeconds(60u));
|
||
|
EXPECT_TRUE(message_handler_dispatched.Wait(0));
|
||
|
worker.Stop();
|
||
|
|
||
|
SetClockForTesting(nullptr);
|
||
|
|
||
|
// The message should have been dispatched long before the 60 seconds fully
|
||
|
// elapsed (just a sanity check).
|
||
|
int64_t real_end_time_ms = TimeMillis();
|
||
|
EXPECT_LT(real_end_time_ms - real_start_time_ms, 10000);
|
||
|
}
|
||
|
|
||
|
} // namespace rtc
|