544 lines
15 KiB
C++
544 lines
15 KiB
C++
|
/*
|
||
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#if defined(WEBRTC_POSIX)
|
||
|
#include <sys/time.h>
|
||
|
#endif // WEBRTC_POSIX
|
||
|
|
||
|
// TODO: Remove this once the cause of sporadic failures in these
|
||
|
// tests is tracked down.
|
||
|
#include <iostream>
|
||
|
|
||
|
#if defined(WEBRTC_WIN)
|
||
|
#include "webrtc/base/win32.h"
|
||
|
#endif // WEBRTC_WIN
|
||
|
|
||
|
#include "webrtc/base/arraysize.h"
|
||
|
#include "webrtc/base/common.h"
|
||
|
#include "webrtc/base/constructormagic.h"
|
||
|
#include "webrtc/base/gunit.h"
|
||
|
#include "webrtc/base/logging.h"
|
||
|
#include "webrtc/base/task.h"
|
||
|
#include "webrtc/base/taskrunner.h"
|
||
|
#include "webrtc/base/thread.h"
|
||
|
#include "webrtc/base/timeutils.h"
|
||
|
|
||
|
namespace rtc {
|
||
|
|
||
|
static int64_t GetCurrentTime() {
|
||
|
return TimeMillis() * 10000;
|
||
|
}
|
||
|
|
||
|
// feel free to change these numbers. Note that '0' won't work, though
|
||
|
#define STUCK_TASK_COUNT 5
|
||
|
#define HAPPY_TASK_COUNT 20
|
||
|
|
||
|
// this is a generic timeout task which, when it signals timeout, will
|
||
|
// include the unique ID of the task in the signal (we don't use this
|
||
|
// in production code because we haven't yet had occasion to generate
|
||
|
// an array of the same types of task)
|
||
|
|
||
|
class IdTimeoutTask : public Task, public sigslot::has_slots<> {
|
||
|
public:
|
||
|
explicit IdTimeoutTask(TaskParent *parent) : Task(parent) {
|
||
|
SignalTimeout.connect(this, &IdTimeoutTask::OnLocalTimeout);
|
||
|
}
|
||
|
|
||
|
sigslot::signal1<const int> SignalTimeoutId;
|
||
|
sigslot::signal1<const int> SignalDoneId;
|
||
|
|
||
|
virtual int ProcessStart() {
|
||
|
return STATE_RESPONSE;
|
||
|
}
|
||
|
|
||
|
void OnLocalTimeout() {
|
||
|
SignalTimeoutId(unique_id());
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
virtual void Stop() {
|
||
|
SignalDoneId(unique_id());
|
||
|
Task::Stop();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class StuckTask : public IdTimeoutTask {
|
||
|
public:
|
||
|
explicit StuckTask(TaskParent *parent) : IdTimeoutTask(parent) {}
|
||
|
virtual int ProcessStart() {
|
||
|
return STATE_BLOCKED;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class HappyTask : public IdTimeoutTask {
|
||
|
public:
|
||
|
explicit HappyTask(TaskParent *parent) : IdTimeoutTask(parent) {
|
||
|
time_to_perform_ = rand() % (STUCK_TASK_COUNT / 2);
|
||
|
}
|
||
|
virtual int ProcessStart() {
|
||
|
if (ElapsedTime() > (time_to_perform_ * 1000 * 10000))
|
||
|
return STATE_RESPONSE;
|
||
|
else
|
||
|
return STATE_BLOCKED;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
int time_to_perform_;
|
||
|
};
|
||
|
|
||
|
// simple implementation of a task runner which uses Windows'
|
||
|
// GetSystemTimeAsFileTime() to get the current clock ticks
|
||
|
|
||
|
class MyTaskRunner : public TaskRunner {
|
||
|
public:
|
||
|
virtual void WakeTasks() { RunTasks(); }
|
||
|
virtual int64_t CurrentTime() { return GetCurrentTime(); }
|
||
|
|
||
|
bool timeout_change() const {
|
||
|
return timeout_change_;
|
||
|
}
|
||
|
|
||
|
void clear_timeout_change() {
|
||
|
timeout_change_ = false;
|
||
|
}
|
||
|
protected:
|
||
|
virtual void OnTimeoutChange() {
|
||
|
timeout_change_ = true;
|
||
|
}
|
||
|
bool timeout_change_;
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// this unit test is primarily concerned (for now) with the timeout
|
||
|
// functionality in tasks. It works as follows:
|
||
|
//
|
||
|
// * Create a bunch of tasks, some "stuck" (ie., guaranteed to timeout)
|
||
|
// and some "happy" (will immediately finish).
|
||
|
// * Set the timeout on the "stuck" tasks to some number of seconds between
|
||
|
// 1 and the number of stuck tasks
|
||
|
// * Start all the stuck & happy tasks in random order
|
||
|
// * Wait "number of stuck tasks" seconds and make sure everything timed out
|
||
|
|
||
|
class TaskTest : public sigslot::has_slots<> {
|
||
|
public:
|
||
|
TaskTest() {}
|
||
|
|
||
|
// no need to delete any tasks; the task runner owns them
|
||
|
~TaskTest() {}
|
||
|
|
||
|
void Start() {
|
||
|
// create and configure tasks
|
||
|
for (int i = 0; i < STUCK_TASK_COUNT; ++i) {
|
||
|
stuck_[i].task_ = new StuckTask(&task_runner_);
|
||
|
stuck_[i].task_->SignalTimeoutId.connect(this,
|
||
|
&TaskTest::OnTimeoutStuck);
|
||
|
stuck_[i].timed_out_ = false;
|
||
|
stuck_[i].xlat_ = stuck_[i].task_->unique_id();
|
||
|
stuck_[i].task_->set_timeout_seconds(i + 1);
|
||
|
LOG(LS_INFO) << "Task " << stuck_[i].xlat_ << " created with timeout "
|
||
|
<< stuck_[i].task_->timeout_seconds();
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < HAPPY_TASK_COUNT; ++i) {
|
||
|
happy_[i].task_ = new HappyTask(&task_runner_);
|
||
|
happy_[i].task_->SignalTimeoutId.connect(this,
|
||
|
&TaskTest::OnTimeoutHappy);
|
||
|
happy_[i].task_->SignalDoneId.connect(this,
|
||
|
&TaskTest::OnDoneHappy);
|
||
|
happy_[i].timed_out_ = false;
|
||
|
happy_[i].xlat_ = happy_[i].task_->unique_id();
|
||
|
}
|
||
|
|
||
|
// start all the tasks in random order
|
||
|
int stuck_index = 0;
|
||
|
int happy_index = 0;
|
||
|
for (int i = 0; i < STUCK_TASK_COUNT + HAPPY_TASK_COUNT; ++i) {
|
||
|
if ((stuck_index < STUCK_TASK_COUNT) &&
|
||
|
(happy_index < HAPPY_TASK_COUNT)) {
|
||
|
if (rand() % 2 == 1) {
|
||
|
stuck_[stuck_index++].task_->Start();
|
||
|
} else {
|
||
|
happy_[happy_index++].task_->Start();
|
||
|
}
|
||
|
} else if (stuck_index < STUCK_TASK_COUNT) {
|
||
|
stuck_[stuck_index++].task_->Start();
|
||
|
} else {
|
||
|
happy_[happy_index++].task_->Start();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < STUCK_TASK_COUNT; ++i) {
|
||
|
std::cout << "Stuck task #" << i << " timeout is " <<
|
||
|
stuck_[i].task_->timeout_seconds() << " at " <<
|
||
|
stuck_[i].task_->timeout_time() << std::endl;
|
||
|
}
|
||
|
|
||
|
// just a little self-check to make sure we started all the tasks
|
||
|
ASSERT_EQ(STUCK_TASK_COUNT, stuck_index);
|
||
|
ASSERT_EQ(HAPPY_TASK_COUNT, happy_index);
|
||
|
|
||
|
// run the unblocked tasks
|
||
|
LOG(LS_INFO) << "Running tasks";
|
||
|
task_runner_.RunTasks();
|
||
|
|
||
|
std::cout << "Start time is " << GetCurrentTime() << std::endl;
|
||
|
|
||
|
// give all the stuck tasks time to timeout
|
||
|
for (int i = 0; !task_runner_.AllChildrenDone() && i < STUCK_TASK_COUNT;
|
||
|
++i) {
|
||
|
Thread::Current()->ProcessMessages(1000);
|
||
|
for (int j = 0; j < HAPPY_TASK_COUNT; ++j) {
|
||
|
if (happy_[j].task_) {
|
||
|
happy_[j].task_->Wake();
|
||
|
}
|
||
|
}
|
||
|
LOG(LS_INFO) << "Polling tasks";
|
||
|
task_runner_.PollTasks();
|
||
|
}
|
||
|
|
||
|
// We see occasional test failures here due to the stuck tasks not having
|
||
|
// timed-out yet, which seems like it should be impossible. To help track
|
||
|
// this down we have added logging of the timing information, which we send
|
||
|
// directly to stdout so that we get it in opt builds too.
|
||
|
std::cout << "End time is " << GetCurrentTime() << std::endl;
|
||
|
}
|
||
|
|
||
|
void OnTimeoutStuck(const int id) {
|
||
|
LOG(LS_INFO) << "Timed out task " << id;
|
||
|
|
||
|
int i;
|
||
|
for (i = 0; i < STUCK_TASK_COUNT; ++i) {
|
||
|
if (stuck_[i].xlat_ == id) {
|
||
|
stuck_[i].timed_out_ = true;
|
||
|
stuck_[i].task_ = NULL;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// getting a bad ID here is a failure, but let's continue
|
||
|
// running to see what else might go wrong
|
||
|
EXPECT_LT(i, STUCK_TASK_COUNT);
|
||
|
}
|
||
|
|
||
|
void OnTimeoutHappy(const int id) {
|
||
|
int i;
|
||
|
for (i = 0; i < HAPPY_TASK_COUNT; ++i) {
|
||
|
if (happy_[i].xlat_ == id) {
|
||
|
happy_[i].timed_out_ = true;
|
||
|
happy_[i].task_ = NULL;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// getting a bad ID here is a failure, but let's continue
|
||
|
// running to see what else might go wrong
|
||
|
EXPECT_LT(i, HAPPY_TASK_COUNT);
|
||
|
}
|
||
|
|
||
|
void OnDoneHappy(const int id) {
|
||
|
int i;
|
||
|
for (i = 0; i < HAPPY_TASK_COUNT; ++i) {
|
||
|
if (happy_[i].xlat_ == id) {
|
||
|
happy_[i].task_ = NULL;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// getting a bad ID here is a failure, but let's continue
|
||
|
// running to see what else might go wrong
|
||
|
EXPECT_LT(i, HAPPY_TASK_COUNT);
|
||
|
}
|
||
|
|
||
|
void check_passed() {
|
||
|
EXPECT_TRUE(task_runner_.AllChildrenDone());
|
||
|
|
||
|
// make sure none of our happy tasks timed out
|
||
|
for (int i = 0; i < HAPPY_TASK_COUNT; ++i) {
|
||
|
EXPECT_FALSE(happy_[i].timed_out_);
|
||
|
}
|
||
|
|
||
|
// make sure all of our stuck tasks timed out
|
||
|
for (int i = 0; i < STUCK_TASK_COUNT; ++i) {
|
||
|
EXPECT_TRUE(stuck_[i].timed_out_);
|
||
|
if (!stuck_[i].timed_out_) {
|
||
|
std::cout << "Stuck task #" << i << " timeout is at "
|
||
|
<< stuck_[i].task_->timeout_time() << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::cout.flush();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
struct TaskInfo {
|
||
|
IdTimeoutTask *task_;
|
||
|
bool timed_out_;
|
||
|
int xlat_;
|
||
|
};
|
||
|
|
||
|
MyTaskRunner task_runner_;
|
||
|
TaskInfo stuck_[STUCK_TASK_COUNT];
|
||
|
TaskInfo happy_[HAPPY_TASK_COUNT];
|
||
|
};
|
||
|
|
||
|
TEST(start_task_test, Timeout) {
|
||
|
TaskTest task_test;
|
||
|
task_test.Start();
|
||
|
task_test.check_passed();
|
||
|
}
|
||
|
|
||
|
// Test for aborting the task while it is running
|
||
|
|
||
|
class AbortTask : public Task {
|
||
|
public:
|
||
|
explicit AbortTask(TaskParent *parent) : Task(parent) {
|
||
|
set_timeout_seconds(1);
|
||
|
}
|
||
|
|
||
|
virtual int ProcessStart() {
|
||
|
Abort();
|
||
|
return STATE_NEXT;
|
||
|
}
|
||
|
private:
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(AbortTask);
|
||
|
};
|
||
|
|
||
|
class TaskAbortTest : public sigslot::has_slots<> {
|
||
|
public:
|
||
|
TaskAbortTest() {}
|
||
|
|
||
|
// no need to delete any tasks; the task runner owns them
|
||
|
~TaskAbortTest() {}
|
||
|
|
||
|
void Start() {
|
||
|
Task *abort_task = new AbortTask(&task_runner_);
|
||
|
abort_task->SignalTimeout.connect(this, &TaskAbortTest::OnTimeout);
|
||
|
abort_task->Start();
|
||
|
|
||
|
// run the task
|
||
|
task_runner_.RunTasks();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void OnTimeout() {
|
||
|
FAIL() << "Task timed out instead of aborting.";
|
||
|
}
|
||
|
|
||
|
MyTaskRunner task_runner_;
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(TaskAbortTest);
|
||
|
};
|
||
|
|
||
|
TEST(start_task_test, Abort) {
|
||
|
TaskAbortTest abort_test;
|
||
|
abort_test.Start();
|
||
|
}
|
||
|
|
||
|
// Test for aborting a task to verify that it does the Wake operation
|
||
|
// which gets it deleted.
|
||
|
|
||
|
class SetBoolOnDeleteTask : public Task {
|
||
|
public:
|
||
|
SetBoolOnDeleteTask(TaskParent *parent, bool *set_when_deleted)
|
||
|
: Task(parent),
|
||
|
set_when_deleted_(set_when_deleted) {
|
||
|
EXPECT_TRUE(NULL != set_when_deleted);
|
||
|
EXPECT_FALSE(*set_when_deleted);
|
||
|
}
|
||
|
|
||
|
virtual ~SetBoolOnDeleteTask() {
|
||
|
*set_when_deleted_ = true;
|
||
|
}
|
||
|
|
||
|
virtual int ProcessStart() {
|
||
|
return STATE_BLOCKED;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
bool* set_when_deleted_;
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(SetBoolOnDeleteTask);
|
||
|
};
|
||
|
|
||
|
class AbortShouldWakeTest : public sigslot::has_slots<> {
|
||
|
public:
|
||
|
AbortShouldWakeTest() {}
|
||
|
|
||
|
// no need to delete any tasks; the task runner owns them
|
||
|
~AbortShouldWakeTest() {}
|
||
|
|
||
|
void Start() {
|
||
|
bool task_deleted = false;
|
||
|
Task *task_to_abort = new SetBoolOnDeleteTask(&task_runner_, &task_deleted);
|
||
|
task_to_abort->Start();
|
||
|
|
||
|
// Task::Abort() should call TaskRunner::WakeTasks(). WakeTasks calls
|
||
|
// TaskRunner::RunTasks() immediately which should delete the task.
|
||
|
task_to_abort->Abort();
|
||
|
EXPECT_TRUE(task_deleted);
|
||
|
|
||
|
if (!task_deleted) {
|
||
|
// avoid a crash (due to referencing a local variable)
|
||
|
// if the test fails.
|
||
|
task_runner_.RunTasks();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void OnTimeout() {
|
||
|
FAIL() << "Task timed out instead of aborting.";
|
||
|
}
|
||
|
|
||
|
MyTaskRunner task_runner_;
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(AbortShouldWakeTest);
|
||
|
};
|
||
|
|
||
|
TEST(start_task_test, AbortShouldWake) {
|
||
|
AbortShouldWakeTest abort_should_wake_test;
|
||
|
abort_should_wake_test.Start();
|
||
|
}
|
||
|
|
||
|
// Validate that TaskRunner's OnTimeoutChange gets called appropriately
|
||
|
// * When a task calls UpdateTaskTimeout
|
||
|
// * When the next timeout task time, times out
|
||
|
class TimeoutChangeTest : public sigslot::has_slots<> {
|
||
|
public:
|
||
|
TimeoutChangeTest()
|
||
|
: task_count_(arraysize(stuck_tasks_)) {}
|
||
|
|
||
|
// no need to delete any tasks; the task runner owns them
|
||
|
~TimeoutChangeTest() {}
|
||
|
|
||
|
void Start() {
|
||
|
for (int i = 0; i < task_count_; ++i) {
|
||
|
stuck_tasks_[i] = new StuckTask(&task_runner_);
|
||
|
stuck_tasks_[i]->set_timeout_seconds(i + 2);
|
||
|
stuck_tasks_[i]->SignalTimeoutId.connect(this,
|
||
|
&TimeoutChangeTest::OnTimeoutId);
|
||
|
}
|
||
|
|
||
|
for (int i = task_count_ - 1; i >= 0; --i) {
|
||
|
stuck_tasks_[i]->Start();
|
||
|
}
|
||
|
task_runner_.clear_timeout_change();
|
||
|
|
||
|
// At this point, our timeouts are set as follows
|
||
|
// task[0] is 2 seconds, task[1] at 3 seconds, etc.
|
||
|
|
||
|
stuck_tasks_[0]->set_timeout_seconds(2);
|
||
|
// Now, task[0] is 2 seconds, task[1] at 3 seconds...
|
||
|
// so timeout change shouldn't be called.
|
||
|
EXPECT_FALSE(task_runner_.timeout_change());
|
||
|
task_runner_.clear_timeout_change();
|
||
|
|
||
|
stuck_tasks_[0]->set_timeout_seconds(1);
|
||
|
// task[0] is 1 seconds, task[1] at 3 seconds...
|
||
|
// The smallest timeout got smaller so timeout change be called.
|
||
|
EXPECT_TRUE(task_runner_.timeout_change());
|
||
|
task_runner_.clear_timeout_change();
|
||
|
|
||
|
stuck_tasks_[1]->set_timeout_seconds(2);
|
||
|
// task[0] is 1 seconds, task[1] at 2 seconds...
|
||
|
// The smallest timeout is still 1 second so no timeout change.
|
||
|
EXPECT_FALSE(task_runner_.timeout_change());
|
||
|
task_runner_.clear_timeout_change();
|
||
|
|
||
|
while (task_count_ > 0) {
|
||
|
int previous_count = task_count_;
|
||
|
task_runner_.PollTasks();
|
||
|
if (previous_count != task_count_) {
|
||
|
// We only get here when a task times out. When that
|
||
|
// happens, the timeout change should get called because
|
||
|
// the smallest timeout is now in the past.
|
||
|
EXPECT_TRUE(task_runner_.timeout_change());
|
||
|
task_runner_.clear_timeout_change();
|
||
|
}
|
||
|
Thread::Current()->socketserver()->Wait(500, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void OnTimeoutId(const int id) {
|
||
|
for (size_t i = 0; i < arraysize(stuck_tasks_); ++i) {
|
||
|
if (stuck_tasks_[i] && stuck_tasks_[i]->unique_id() == id) {
|
||
|
task_count_--;
|
||
|
stuck_tasks_[i] = NULL;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MyTaskRunner task_runner_;
|
||
|
StuckTask* (stuck_tasks_[3]);
|
||
|
int task_count_;
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(TimeoutChangeTest);
|
||
|
};
|
||
|
|
||
|
TEST(start_task_test, TimeoutChange) {
|
||
|
TimeoutChangeTest timeout_change_test;
|
||
|
timeout_change_test.Start();
|
||
|
}
|
||
|
|
||
|
class DeleteTestTaskRunner : public TaskRunner {
|
||
|
public:
|
||
|
DeleteTestTaskRunner() {
|
||
|
}
|
||
|
virtual void WakeTasks() { }
|
||
|
virtual int64_t CurrentTime() { return GetCurrentTime(); }
|
||
|
private:
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(DeleteTestTaskRunner);
|
||
|
};
|
||
|
|
||
|
TEST(unstarted_task_test, DeleteTask) {
|
||
|
// This test ensures that we don't
|
||
|
// crash if a task is deleted without running it.
|
||
|
DeleteTestTaskRunner task_runner;
|
||
|
HappyTask* happy_task = new HappyTask(&task_runner);
|
||
|
happy_task->Start();
|
||
|
|
||
|
// try deleting the task directly
|
||
|
HappyTask* child_happy_task = new HappyTask(happy_task);
|
||
|
delete child_happy_task;
|
||
|
|
||
|
// run the unblocked tasks
|
||
|
task_runner.RunTasks();
|
||
|
}
|
||
|
|
||
|
TEST(unstarted_task_test, DoNotDeleteTask1) {
|
||
|
// This test ensures that we don't
|
||
|
// crash if a task runner is deleted without
|
||
|
// running a certain task.
|
||
|
DeleteTestTaskRunner task_runner;
|
||
|
HappyTask* happy_task = new HappyTask(&task_runner);
|
||
|
happy_task->Start();
|
||
|
|
||
|
HappyTask* child_happy_task = new HappyTask(happy_task);
|
||
|
child_happy_task->Start();
|
||
|
|
||
|
// Never run the tasks
|
||
|
}
|
||
|
|
||
|
TEST(unstarted_task_test, DoNotDeleteTask2) {
|
||
|
// This test ensures that we don't
|
||
|
// crash if a taskrunner is delete with a
|
||
|
// task that has never been started.
|
||
|
DeleteTestTaskRunner task_runner;
|
||
|
HappyTask* happy_task = new HappyTask(&task_runner);
|
||
|
happy_task->Start();
|
||
|
|
||
|
// Do not start the task.
|
||
|
// Note: this leaks memory, so don't do this.
|
||
|
// Instead, always run your tasks or delete them.
|
||
|
new HappyTask(happy_task);
|
||
|
|
||
|
// run the unblocked tasks
|
||
|
task_runner.RunTasks();
|
||
|
}
|
||
|
|
||
|
} // namespace rtc
|