497 lines
21 KiB
C++
497 lines
21 KiB
C++
|
/*
|
||
|
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include <memory>
|
||
|
#include <string>
|
||
|
|
||
|
#include "webrtc/base/gunit.h"
|
||
|
#include "webrtc/base/helpers.h"
|
||
|
#include "webrtc/base/ssladapter.h"
|
||
|
#include "webrtc/base/sslidentity.h"
|
||
|
|
||
|
using rtc::SSLIdentity;
|
||
|
|
||
|
const char kTestCertificate[] = "-----BEGIN CERTIFICATE-----\n"
|
||
|
"MIIB6TCCAVICAQYwDQYJKoZIhvcNAQEEBQAwWzELMAkGA1UEBhMCQVUxEzARBgNV\n"
|
||
|
"BAgTClF1ZWVuc2xhbmQxGjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMRswGQYD\n"
|
||
|
"VQQDExJUZXN0IENBICgxMDI0IGJpdCkwHhcNMDAxMDE2MjIzMTAzWhcNMDMwMTE0\n"
|
||
|
"MjIzMTAzWjBjMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEaMBgG\n"
|
||
|
"A1UEChMRQ3J5cHRTb2Z0IFB0eSBMdGQxIzAhBgNVBAMTGlNlcnZlciB0ZXN0IGNl\n"
|
||
|
"cnQgKDUxMiBiaXQpMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJ+zw4Qnlf8SMVIP\n"
|
||
|
"Fe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVDTGiXav6ooKXfX3j/7tdkuD8Ey2//\n"
|
||
|
"Kv7+ue0CAwEAATANBgkqhkiG9w0BAQQFAAOBgQCT0grFQeZaqYb5EYfk20XixZV4\n"
|
||
|
"GmyAbXMftG1Eo7qGiMhYzRwGNWxEYojf5PZkYZXvSqZ/ZXHXa4g59jK/rJNnaVGM\n"
|
||
|
"k+xIX8mxQvlV0n5O9PIha5BX5teZnkHKgL8aKKLKW1BK7YTngsfSzzaeame5iKfz\n"
|
||
|
"itAE+OjGF+PFKbwX8Q==\n"
|
||
|
"-----END CERTIFICATE-----\n";
|
||
|
|
||
|
const unsigned char kTestCertSha1[] = {
|
||
|
0xA6, 0xC8, 0x59, 0xEA, 0xC3, 0x7E, 0x6D, 0x33,
|
||
|
0xCF, 0xE2, 0x69, 0x9D, 0x74, 0xE6, 0xF6, 0x8A,
|
||
|
0x9E, 0x47, 0xA7, 0xCA};
|
||
|
const unsigned char kTestCertSha224[] = {
|
||
|
0xd4, 0xce, 0xc6, 0xcf, 0x28, 0xcb, 0xe9, 0x77,
|
||
|
0x38, 0x36, 0xcf, 0xb1, 0x3b, 0x4a, 0xd7, 0xbd,
|
||
|
0xae, 0x24, 0x21, 0x08, 0xcf, 0x6a, 0x44, 0x0d,
|
||
|
0x3f, 0x94, 0x2a, 0x5b};
|
||
|
const unsigned char kTestCertSha256[] = {
|
||
|
0x41, 0x6b, 0xb4, 0x93, 0x47, 0x79, 0x77, 0x24,
|
||
|
0x77, 0x0b, 0x8b, 0x2e, 0xa6, 0x2b, 0xe0, 0xf9,
|
||
|
0x0a, 0xed, 0x1f, 0x31, 0xa6, 0xf7, 0x5c, 0xa1,
|
||
|
0x5a, 0xc4, 0xb0, 0xa2, 0xa4, 0x78, 0xb9, 0x76};
|
||
|
const unsigned char kTestCertSha384[] = {
|
||
|
0x42, 0x31, 0x9a, 0x79, 0x1d, 0xd6, 0x08, 0xbf,
|
||
|
0x3b, 0xba, 0x36, 0xd8, 0x37, 0x4a, 0x9a, 0x75,
|
||
|
0xd3, 0x25, 0x6e, 0x28, 0x92, 0xbe, 0x06, 0xb7,
|
||
|
0xc5, 0xa0, 0x83, 0xe3, 0x86, 0xb1, 0x03, 0xfc,
|
||
|
0x64, 0x47, 0xd6, 0xd8, 0xaa, 0xd9, 0x36, 0x60,
|
||
|
0x04, 0xcc, 0xbe, 0x7d, 0x6a, 0xe8, 0x34, 0x49};
|
||
|
const unsigned char kTestCertSha512[] = {
|
||
|
0x51, 0x1d, 0xec, 0x02, 0x3d, 0x51, 0x45, 0xd3,
|
||
|
0xd8, 0x1d, 0xa4, 0x9d, 0x43, 0xc9, 0xee, 0x32,
|
||
|
0x6f, 0x4f, 0x37, 0xee, 0xab, 0x3f, 0x25, 0xdf,
|
||
|
0x72, 0xfc, 0x61, 0x1a, 0xd5, 0x92, 0xff, 0x6b,
|
||
|
0x28, 0x71, 0x58, 0xb3, 0xe1, 0x8a, 0x18, 0xcf,
|
||
|
0x61, 0x33, 0x0e, 0x14, 0xc3, 0x04, 0xaa, 0x07,
|
||
|
0xf6, 0xa5, 0xda, 0xdc, 0x42, 0x42, 0x22, 0x35,
|
||
|
0xce, 0x26, 0x58, 0x4a, 0x33, 0x6d, 0xbc, 0xb6};
|
||
|
|
||
|
class SSLIdentityTest : public testing::Test {
|
||
|
public:
|
||
|
SSLIdentityTest() {}
|
||
|
|
||
|
~SSLIdentityTest() {
|
||
|
}
|
||
|
|
||
|
virtual void SetUp() {
|
||
|
identity_rsa1_.reset(SSLIdentity::Generate("test1", rtc::KT_RSA));
|
||
|
identity_rsa2_.reset(SSLIdentity::Generate("test2", rtc::KT_RSA));
|
||
|
identity_ecdsa1_.reset(SSLIdentity::Generate("test3", rtc::KT_ECDSA));
|
||
|
identity_ecdsa2_.reset(SSLIdentity::Generate("test4", rtc::KT_ECDSA));
|
||
|
|
||
|
ASSERT_TRUE(identity_rsa1_);
|
||
|
ASSERT_TRUE(identity_rsa2_);
|
||
|
ASSERT_TRUE(identity_ecdsa1_);
|
||
|
ASSERT_TRUE(identity_ecdsa2_);
|
||
|
|
||
|
test_cert_.reset(rtc::SSLCertificate::FromPEMString(kTestCertificate));
|
||
|
ASSERT_TRUE(test_cert_);
|
||
|
}
|
||
|
|
||
|
void TestGetSignatureDigestAlgorithm() {
|
||
|
std::string digest_algorithm;
|
||
|
|
||
|
ASSERT_TRUE(identity_rsa1_->certificate().GetSignatureDigestAlgorithm(
|
||
|
&digest_algorithm));
|
||
|
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
|
||
|
|
||
|
ASSERT_TRUE(identity_rsa2_->certificate().GetSignatureDigestAlgorithm(
|
||
|
&digest_algorithm));
|
||
|
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
|
||
|
|
||
|
ASSERT_TRUE(identity_ecdsa1_->certificate().GetSignatureDigestAlgorithm(
|
||
|
&digest_algorithm));
|
||
|
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
|
||
|
|
||
|
ASSERT_TRUE(identity_ecdsa2_->certificate().GetSignatureDigestAlgorithm(
|
||
|
&digest_algorithm));
|
||
|
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
|
||
|
|
||
|
// The test certificate has an MD5-based signature.
|
||
|
ASSERT_TRUE(test_cert_->GetSignatureDigestAlgorithm(&digest_algorithm));
|
||
|
ASSERT_EQ(rtc::DIGEST_MD5, digest_algorithm);
|
||
|
}
|
||
|
|
||
|
typedef unsigned char DigestType[rtc::MessageDigest::kMaxSize];
|
||
|
|
||
|
void TestDigestHelper(DigestType digest,
|
||
|
const SSLIdentity* identity,
|
||
|
const std::string& algorithm,
|
||
|
size_t expected_len) {
|
||
|
DigestType digest1;
|
||
|
size_t digest_len;
|
||
|
bool rv;
|
||
|
|
||
|
memset(digest, 0, expected_len);
|
||
|
rv = identity->certificate().ComputeDigest(algorithm, digest,
|
||
|
sizeof(DigestType), &digest_len);
|
||
|
EXPECT_TRUE(rv);
|
||
|
EXPECT_EQ(expected_len, digest_len);
|
||
|
|
||
|
// Repeat digest computation for the identity as a sanity check.
|
||
|
memset(digest1, 0xff, expected_len);
|
||
|
rv = identity->certificate().ComputeDigest(algorithm, digest1,
|
||
|
sizeof(DigestType), &digest_len);
|
||
|
EXPECT_TRUE(rv);
|
||
|
EXPECT_EQ(expected_len, digest_len);
|
||
|
|
||
|
EXPECT_EQ(0, memcmp(digest, digest1, expected_len));
|
||
|
}
|
||
|
|
||
|
void TestDigestForGeneratedCert(const std::string& algorithm,
|
||
|
size_t expected_len) {
|
||
|
DigestType digest[4];
|
||
|
|
||
|
ASSERT_TRUE(expected_len <= sizeof(DigestType));
|
||
|
|
||
|
TestDigestHelper(digest[0], identity_rsa1_.get(), algorithm, expected_len);
|
||
|
TestDigestHelper(digest[1], identity_rsa2_.get(), algorithm, expected_len);
|
||
|
TestDigestHelper(digest[2], identity_ecdsa1_.get(), algorithm,
|
||
|
expected_len);
|
||
|
TestDigestHelper(digest[3], identity_ecdsa2_.get(), algorithm,
|
||
|
expected_len);
|
||
|
|
||
|
// Sanity check that all four digests are unique. This could theoretically
|
||
|
// fail, since cryptographic hash collisions have a non-zero probability.
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
for (int j = 0; j < 4; j++) {
|
||
|
if (i != j)
|
||
|
EXPECT_NE(0, memcmp(digest[i], digest[j], expected_len));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void TestDigestForFixedCert(const std::string& algorithm,
|
||
|
size_t expected_len,
|
||
|
const unsigned char* expected_digest) {
|
||
|
bool rv;
|
||
|
DigestType digest;
|
||
|
size_t digest_len;
|
||
|
|
||
|
ASSERT_TRUE(expected_len <= sizeof(DigestType));
|
||
|
|
||
|
rv = test_cert_->ComputeDigest(algorithm, digest, sizeof(digest),
|
||
|
&digest_len);
|
||
|
EXPECT_TRUE(rv);
|
||
|
EXPECT_EQ(expected_len, digest_len);
|
||
|
EXPECT_EQ(0, memcmp(digest, expected_digest, expected_len));
|
||
|
}
|
||
|
|
||
|
void TestCloningIdentity(const SSLIdentity& identity) {
|
||
|
// Convert |identity| to PEM strings and create a new identity by converting
|
||
|
// back from the string format.
|
||
|
std::string priv_pem = identity.PrivateKeyToPEMString();
|
||
|
std::string publ_pem = identity.PublicKeyToPEMString();
|
||
|
std::string cert_pem = identity.certificate().ToPEMString();
|
||
|
std::unique_ptr<SSLIdentity> clone(
|
||
|
SSLIdentity::FromPEMStrings(priv_pem, cert_pem));
|
||
|
EXPECT_TRUE(clone);
|
||
|
|
||
|
// Make sure the clone is identical to the original.
|
||
|
EXPECT_TRUE(identity == *clone);
|
||
|
ASSERT_EQ(identity.certificate().CertificateExpirationTime(),
|
||
|
clone->certificate().CertificateExpirationTime());
|
||
|
|
||
|
// At this point we are confident that the identities are identical. To be
|
||
|
// extra sure, we compare PEM strings of the clone with the original. Note
|
||
|
// that the PEM strings of two identities are not strictly guaranteed to be
|
||
|
// equal (they describe structs whose members could be listed in a different
|
||
|
// order, for example). But because the same function is used to produce
|
||
|
// both PEMs, its a good enough bet that this comparison will work. If the
|
||
|
// assumption stops holding in the future we can always remove this from the
|
||
|
// unittest.
|
||
|
std::string clone_priv_pem = clone->PrivateKeyToPEMString();
|
||
|
std::string clone_publ_pem = clone->PublicKeyToPEMString();
|
||
|
std::string clone_cert_pem = clone->certificate().ToPEMString();
|
||
|
ASSERT_EQ(priv_pem, clone_priv_pem);
|
||
|
ASSERT_EQ(publ_pem, clone_publ_pem);
|
||
|
ASSERT_EQ(cert_pem, clone_cert_pem);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
std::unique_ptr<SSLIdentity> identity_rsa1_;
|
||
|
std::unique_ptr<SSLIdentity> identity_rsa2_;
|
||
|
std::unique_ptr<SSLIdentity> identity_ecdsa1_;
|
||
|
std::unique_ptr<SSLIdentity> identity_ecdsa2_;
|
||
|
std::unique_ptr<rtc::SSLCertificate> test_cert_;
|
||
|
};
|
||
|
|
||
|
TEST_F(SSLIdentityTest, FixedDigestSHA1) {
|
||
|
TestDigestForFixedCert(rtc::DIGEST_SHA_1, 20, kTestCertSha1);
|
||
|
}
|
||
|
|
||
|
// HASH_AlgSHA224 is not supported in the chromium linux build.
|
||
|
TEST_F(SSLIdentityTest, FixedDigestSHA224) {
|
||
|
TestDigestForFixedCert(rtc::DIGEST_SHA_224, 28, kTestCertSha224);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, FixedDigestSHA256) {
|
||
|
TestDigestForFixedCert(rtc::DIGEST_SHA_256, 32, kTestCertSha256);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, FixedDigestSHA384) {
|
||
|
TestDigestForFixedCert(rtc::DIGEST_SHA_384, 48, kTestCertSha384);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, FixedDigestSHA512) {
|
||
|
TestDigestForFixedCert(rtc::DIGEST_SHA_512, 64, kTestCertSha512);
|
||
|
}
|
||
|
|
||
|
// HASH_AlgSHA224 is not supported in the chromium linux build.
|
||
|
TEST_F(SSLIdentityTest, DigestSHA224) {
|
||
|
TestDigestForGeneratedCert(rtc::DIGEST_SHA_224, 28);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, DigestSHA256) {
|
||
|
TestDigestForGeneratedCert(rtc::DIGEST_SHA_256, 32);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, DigestSHA384) {
|
||
|
TestDigestForGeneratedCert(rtc::DIGEST_SHA_384, 48);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, DigestSHA512) {
|
||
|
TestDigestForGeneratedCert(rtc::DIGEST_SHA_512, 64);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, IdentityComparison) {
|
||
|
EXPECT_TRUE(*identity_rsa1_ == *identity_rsa1_);
|
||
|
EXPECT_FALSE(*identity_rsa1_ == *identity_rsa2_);
|
||
|
EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa1_);
|
||
|
EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa2_);
|
||
|
|
||
|
EXPECT_TRUE(*identity_rsa2_ == *identity_rsa2_);
|
||
|
EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa1_);
|
||
|
EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa2_);
|
||
|
|
||
|
EXPECT_TRUE(*identity_ecdsa1_ == *identity_ecdsa1_);
|
||
|
EXPECT_FALSE(*identity_ecdsa1_ == *identity_ecdsa2_);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, FromPEMStringsRSA) {
|
||
|
// These PEM strings were created by generating an identity with
|
||
|
// |SSLIdentity::Generate| and invoking |identity->PrivateKeyToPEMString()|,
|
||
|
// |identity->PublicKeyToPEMString()| and
|
||
|
// |identity->certificate().ToPEMString()|. If the crypto library is updated,
|
||
|
// and the update changes the string form of the keys, these will have to be
|
||
|
// updated too.
|
||
|
static const char kRSA_PRIVATE_KEY_PEM[] =
|
||
|
"-----BEGIN PRIVATE KEY-----\n"
|
||
|
"MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAMQPqDStRlYeDpkX\n"
|
||
|
"erRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr\n"
|
||
|
"4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuFLNEl\n"
|
||
|
"7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAECgYA8FWBC5GcNtSBcIinkZyigF0A7\n"
|
||
|
"6j081sa+J/uNz4xUuI257ZXM6biygUhhvuXK06/XoIULJfhyN0fAm1yb0HtNhiUs\n"
|
||
|
"kMOYeon6b8FqFaPjrQf7Gr9FMiIHXNK19uegTMKztXyPZoUWlX84X0iawY95x0Y3\n"
|
||
|
"73f6P2rN2UOjlVVjAQJBAOKy3l2w3Zj2w0oAJox0eMwl+RxBNt1C42SHrob2mFUT\n"
|
||
|
"rytpVVYOasr8CoDI0kjacjI94sLum+buJoXXX6YTGO0CQQDdZwlYIEkoS3ftfxPa\n"
|
||
|
"Ai0YTBzAWvHJg0r8Gk/TkHo6IM+LSsZ9ZYUv/vBe4BKLw1I4hZ+bQvBiq+f8ROtk\n"
|
||
|
"+TDRAkAPL3ghwoU1h+IRBO2QHwUwd6K2N9AbBi4BP+168O3HVSg4ujeTKigRLMzv\n"
|
||
|
"T4R2iNt5bhfQgvdCgtVlxcWMdF8JAkBwDCg3eEdt5BuyjwBt8XH+/O4ED0KUWCTH\n"
|
||
|
"x00k5dZlupsuhE5Fwe4QpzXg3gekwdnHjyCCQ/NCDHvgOMTkmhQxAkA9V03KRX9b\n"
|
||
|
"bhvEzY/fu8gEp+EzsER96/D79az5z1BaMGL5OPM2xHBPJATKlswnAa7Lp3QKGZGk\n"
|
||
|
"TxslfL18J71s\n"
|
||
|
"-----END PRIVATE KEY-----\n";
|
||
|
static const char kRSA_PUBLIC_KEY_PEM[] =
|
||
|
"-----BEGIN PUBLIC KEY-----\n"
|
||
|
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDED6g0rUZWHg6ZF3q0Zr/mtZ2j\n"
|
||
|
"PL0lUmNIBtqZZ656H1YlkVtzEalgvtNtDLCI94T2XkgJ7f8vxS/56+BGuzV3MHUa\n"
|
||
|
"Nf9cRCu1P3/3I0oNWrp8rxwh8HBXDK99Ryxbx69GYHBcG4CLhSzRJe5CuRzDvQD8\n"
|
||
|
"9Z7VI3pPAZgY/MjJfQIDAQAB\n"
|
||
|
"-----END PUBLIC KEY-----\n";
|
||
|
static const char kCERT_PEM[] =
|
||
|
"-----BEGIN CERTIFICATE-----\n"
|
||
|
"MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNV\n"
|
||
|
"BAMMBXRlc3QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwG\n"
|
||
|
"A1UEAwwFdGVzdDEwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYe\n"
|
||
|
"DpkXerRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/F\n"
|
||
|
"L/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuF\n"
|
||
|
"LNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhvcNAQELBQADgYEA\n"
|
||
|
"C3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJi8dx\n"
|
||
|
"yTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFq\n"
|
||
|
"e3UkexqNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q=\n"
|
||
|
"-----END CERTIFICATE-----\n";
|
||
|
|
||
|
std::unique_ptr<SSLIdentity> identity(
|
||
|
SSLIdentity::FromPEMStrings(kRSA_PRIVATE_KEY_PEM, kCERT_PEM));
|
||
|
EXPECT_TRUE(identity);
|
||
|
EXPECT_EQ(kRSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString());
|
||
|
EXPECT_EQ(kRSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString());
|
||
|
EXPECT_EQ(kCERT_PEM, identity->certificate().ToPEMString());
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, FromPEMStringsEC) {
|
||
|
// These PEM strings were created by generating an identity with
|
||
|
// |SSLIdentity::Generate| and invoking |identity->PrivateKeyToPEMString()|,
|
||
|
// |identity->PublicKeyToPEMString()| and
|
||
|
// |identity->certificate().ToPEMString()|. If the crypto library is updated,
|
||
|
// and the update changes the string form of the keys, these will have to be
|
||
|
// updated too.
|
||
|
static const char kECDSA_PRIVATE_KEY_PEM[] =
|
||
|
"-----BEGIN PRIVATE KEY-----\n"
|
||
|
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg/AkEA2hklq7dQ2rN\n"
|
||
|
"ZxYL6hOUACL4pn7P4FYlA3ZQhIChRANCAAR7YgdO3utP/8IqVRq8G4VZKreMAxeN\n"
|
||
|
"rUa12twthv4uFjuHAHa9D9oyAjncmn+xvZZRyVmKrA56jRzENcEEHoAg\n"
|
||
|
"-----END PRIVATE KEY-----\n";
|
||
|
static const char kECDSA_PUBLIC_KEY_PEM[] =
|
||
|
"-----BEGIN PUBLIC KEY-----\n"
|
||
|
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEe2IHTt7rT//CKlUavBuFWSq3jAMX\n"
|
||
|
"ja1GtdrcLYb+LhY7hwB2vQ/aMgI53Jp/sb2WUclZiqwOeo0cxDXBBB6AIA==\n"
|
||
|
"-----END PUBLIC KEY-----\n";
|
||
|
static const char kCERT_PEM[] =
|
||
|
"-----BEGIN CERTIFICATE-----\n"
|
||
|
"MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwF\n"
|
||
|
"dGVzdDMwHhcNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQD\n"
|
||
|
"DAV0ZXN0MzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwb\n"
|
||
|
"hVkqt4wDF42tRrXa3C2G/i4WO4cAdr0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQe\n"
|
||
|
"gCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuPPpirsd0e/4WGLHou6bIOSQks\n"
|
||
|
"DYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99hkekw==\n"
|
||
|
"-----END CERTIFICATE-----\n";
|
||
|
|
||
|
std::unique_ptr<SSLIdentity> identity(
|
||
|
SSLIdentity::FromPEMStrings(kECDSA_PRIVATE_KEY_PEM, kCERT_PEM));
|
||
|
EXPECT_TRUE(identity);
|
||
|
EXPECT_EQ(kECDSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString());
|
||
|
EXPECT_EQ(kECDSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString());
|
||
|
EXPECT_EQ(kCERT_PEM, identity->certificate().ToPEMString());
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, CloneIdentityRSA) {
|
||
|
TestCloningIdentity(*identity_rsa1_);
|
||
|
TestCloningIdentity(*identity_rsa2_);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, CloneIdentityECDSA) {
|
||
|
TestCloningIdentity(*identity_ecdsa1_);
|
||
|
TestCloningIdentity(*identity_ecdsa2_);
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, PemDerConversion) {
|
||
|
std::string der;
|
||
|
EXPECT_TRUE(SSLIdentity::PemToDer("CERTIFICATE", kTestCertificate, &der));
|
||
|
|
||
|
EXPECT_EQ(kTestCertificate, SSLIdentity::DerToPem(
|
||
|
"CERTIFICATE",
|
||
|
reinterpret_cast<const unsigned char*>(der.data()), der.length()));
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityTest, GetSignatureDigestAlgorithm) {
|
||
|
TestGetSignatureDigestAlgorithm();
|
||
|
}
|
||
|
|
||
|
class SSLIdentityExpirationTest : public testing::Test {
|
||
|
public:
|
||
|
SSLIdentityExpirationTest() {
|
||
|
// Set use of the test RNG to get deterministic expiration timestamp.
|
||
|
rtc::SetRandomTestMode(true);
|
||
|
}
|
||
|
~SSLIdentityExpirationTest() {
|
||
|
// Put it back for the next test.
|
||
|
rtc::SetRandomTestMode(false);
|
||
|
}
|
||
|
|
||
|
void TestASN1TimeToSec() {
|
||
|
struct asn_example {
|
||
|
const char* string;
|
||
|
bool long_format;
|
||
|
int64_t want;
|
||
|
} static const data[] = {
|
||
|
// Valid examples.
|
||
|
{"19700101000000Z", true, 0},
|
||
|
{"700101000000Z", false, 0},
|
||
|
{"19700101000001Z", true, 1},
|
||
|
{"700101000001Z", false, 1},
|
||
|
{"19700101000100Z", true, 60},
|
||
|
{"19700101000101Z", true, 61},
|
||
|
{"19700101010000Z", true, 3600},
|
||
|
{"19700101010001Z", true, 3601},
|
||
|
{"19700101010100Z", true, 3660},
|
||
|
{"19700101010101Z", true, 3661},
|
||
|
{"710911012345Z", false, 53400225},
|
||
|
{"20000101000000Z", true, 946684800},
|
||
|
{"20000101000000Z", true, 946684800},
|
||
|
{"20151130140156Z", true, 1448892116},
|
||
|
{"151130140156Z", false, 1448892116},
|
||
|
{"20491231235959Z", true, 2524607999},
|
||
|
{"491231235959Z", false, 2524607999},
|
||
|
{"20500101000000Z", true, 2524607999+1},
|
||
|
{"20700101000000Z", true, 3155760000},
|
||
|
{"21000101000000Z", true, 4102444800},
|
||
|
{"24000101000000Z", true, 13569465600},
|
||
|
|
||
|
// Invalid examples.
|
||
|
{"19700101000000", true, -1}, // missing Z long format
|
||
|
{"19700101000000X", true, -1}, // X instead of Z long format
|
||
|
{"197001010000000", true, -1}, // 0 instead of Z long format
|
||
|
{"1970010100000000Z", true, -1}, // excess digits long format
|
||
|
{"700101000000", false, -1}, // missing Z short format
|
||
|
{"700101000000X", false, -1}, // X instead of Z short format
|
||
|
{"7001010000000", false, -1}, // 0 instead of Z short format
|
||
|
{"70010100000000Z", false, -1}, // excess digits short format
|
||
|
{":9700101000000Z", true, -1}, // invalid character
|
||
|
{"1:700101000001Z", true, -1}, // invalid character
|
||
|
{"19:00101000100Z", true, -1}, // invalid character
|
||
|
{"197:0101000101Z", true, -1}, // invalid character
|
||
|
{"1970:101010000Z", true, -1}, // invalid character
|
||
|
{"19700:01010001Z", true, -1}, // invalid character
|
||
|
{"197001:1010100Z", true, -1}, // invalid character
|
||
|
{"1970010:010101Z", true, -1}, // invalid character
|
||
|
{"70010100:000Z", false, -1}, // invalid character
|
||
|
{"700101000:01Z", false, -1}, // invalid character
|
||
|
{"2000010100:000Z", true, -1}, // invalid character
|
||
|
{"21000101000:00Z", true, -1}, // invalid character
|
||
|
{"240001010000:0Z", true, -1}, // invalid character
|
||
|
{"500101000000Z", false, -1}, // but too old for epoch
|
||
|
{"691231235959Z", false, -1}, // too old for epoch
|
||
|
{"19611118043000Z", false, -1}, // way too old for epoch
|
||
|
};
|
||
|
|
||
|
unsigned char buf[20];
|
||
|
|
||
|
// Run all examples and check for the expected result.
|
||
|
for (const auto& entry : data) {
|
||
|
size_t length = strlen(entry.string);
|
||
|
memcpy(buf, entry.string, length); // Copy the ASN1 string...
|
||
|
buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk.
|
||
|
int64_t res = rtc::ASN1TimeToSec(buf, length, entry.long_format);
|
||
|
LOG(LS_VERBOSE) << entry.string;
|
||
|
ASSERT_EQ(entry.want, res);
|
||
|
}
|
||
|
// Run all examples again, but with an invalid length.
|
||
|
for (const auto& entry : data) {
|
||
|
size_t length = strlen(entry.string);
|
||
|
memcpy(buf, entry.string, length); // Copy the ASN1 string...
|
||
|
buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk.
|
||
|
int64_t res = rtc::ASN1TimeToSec(buf, length - 1, entry.long_format);
|
||
|
LOG(LS_VERBOSE) << entry.string;
|
||
|
ASSERT_EQ(-1, res);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void TestExpireTime(int times) {
|
||
|
// We test just ECDSA here since what we're out to exercise is the
|
||
|
// interfaces for expiration setting and reading.
|
||
|
for (int i = 0; i < times; i++) {
|
||
|
// We limit the time to < 2^31 here, i.e., we stay before 2038, since else
|
||
|
// we hit time offset limitations in OpenSSL on some 32-bit systems.
|
||
|
time_t time_before_generation = time(nullptr);
|
||
|
time_t lifetime =
|
||
|
rtc::CreateRandomId() % (0x80000000 - time_before_generation);
|
||
|
rtc::KeyParams key_params = rtc::KeyParams::ECDSA(rtc::EC_NIST_P256);
|
||
|
SSLIdentity* identity =
|
||
|
rtc::SSLIdentity::GenerateWithExpiration("", key_params, lifetime);
|
||
|
time_t time_after_generation = time(nullptr);
|
||
|
EXPECT_LE(time_before_generation + lifetime,
|
||
|
identity->certificate().CertificateExpirationTime());
|
||
|
EXPECT_GE(time_after_generation + lifetime,
|
||
|
identity->certificate().CertificateExpirationTime());
|
||
|
delete identity;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST_F(SSLIdentityExpirationTest, TestASN1TimeToSec) {
|
||
|
TestASN1TimeToSec();
|
||
|
}
|
||
|
|
||
|
TEST_F(SSLIdentityExpirationTest, TestExpireTime) {
|
||
|
TestExpireTime(500);
|
||
|
}
|