393 lines
16 KiB
C++
393 lines
16 KiB
C++
|
/*
|
||
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
// Modified from the Chromium original:
|
||
|
// src/media/base/sinc_resampler_unittest.cc
|
||
|
|
||
|
// MSVC++ requires this to be set before any other includes to get M_PI.
|
||
|
#define _USE_MATH_DEFINES
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
#include <memory>
|
||
|
|
||
|
#include "testing/gmock/include/gmock/gmock.h"
|
||
|
#include "testing/gtest/include/gtest/gtest.h"
|
||
|
#include "webrtc/base/timeutils.h"
|
||
|
#include "webrtc/common_audio/resampler/sinc_resampler.h"
|
||
|
#include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h"
|
||
|
#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
|
||
|
#include "webrtc/system_wrappers/include/stringize_macros.h"
|
||
|
#include "webrtc/test/test_suite.h"
|
||
|
|
||
|
using testing::_;
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
static const double kSampleRateRatio = 192000.0 / 44100.0;
|
||
|
static const double kKernelInterpolationFactor = 0.5;
|
||
|
|
||
|
// Helper class to ensure ChunkedResample() functions properly.
|
||
|
class MockSource : public SincResamplerCallback {
|
||
|
public:
|
||
|
MOCK_METHOD2(Run, void(size_t frames, float* destination));
|
||
|
};
|
||
|
|
||
|
ACTION(ClearBuffer) {
|
||
|
memset(arg1, 0, arg0 * sizeof(float));
|
||
|
}
|
||
|
|
||
|
ACTION(FillBuffer) {
|
||
|
// Value chosen arbitrarily such that SincResampler resamples it to something
|
||
|
// easily representable on all platforms; e.g., using kSampleRateRatio this
|
||
|
// becomes 1.81219.
|
||
|
memset(arg1, 64, arg0 * sizeof(float));
|
||
|
}
|
||
|
|
||
|
// Test requesting multiples of ChunkSize() frames results in the proper number
|
||
|
// of callbacks.
|
||
|
TEST(SincResamplerTest, ChunkedResample) {
|
||
|
MockSource mock_source;
|
||
|
|
||
|
// Choose a high ratio of input to output samples which will result in quick
|
||
|
// exhaustion of SincResampler's internal buffers.
|
||
|
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
|
||
|
&mock_source);
|
||
|
|
||
|
static const int kChunks = 2;
|
||
|
size_t max_chunk_size = resampler.ChunkSize() * kChunks;
|
||
|
std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
|
||
|
|
||
|
// Verify requesting ChunkSize() frames causes a single callback.
|
||
|
EXPECT_CALL(mock_source, Run(_, _))
|
||
|
.Times(1).WillOnce(ClearBuffer());
|
||
|
resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
|
||
|
|
||
|
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
|
||
|
testing::Mock::VerifyAndClear(&mock_source);
|
||
|
EXPECT_CALL(mock_source, Run(_, _))
|
||
|
.Times(kChunks).WillRepeatedly(ClearBuffer());
|
||
|
resampler.Resample(max_chunk_size, resampled_destination.get());
|
||
|
}
|
||
|
|
||
|
// Test flush resets the internal state properly.
|
||
|
TEST(SincResamplerTest, Flush) {
|
||
|
MockSource mock_source;
|
||
|
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
|
||
|
&mock_source);
|
||
|
std::unique_ptr<float[]> resampled_destination(
|
||
|
new float[resampler.ChunkSize()]);
|
||
|
|
||
|
// Fill the resampler with junk data.
|
||
|
EXPECT_CALL(mock_source, Run(_, _))
|
||
|
.Times(1).WillOnce(FillBuffer());
|
||
|
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
|
||
|
ASSERT_NE(resampled_destination[0], 0);
|
||
|
|
||
|
// Flush and request more data, which should all be zeros now.
|
||
|
resampler.Flush();
|
||
|
testing::Mock::VerifyAndClear(&mock_source);
|
||
|
EXPECT_CALL(mock_source, Run(_, _))
|
||
|
.Times(1).WillOnce(ClearBuffer());
|
||
|
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
|
||
|
for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
|
||
|
ASSERT_FLOAT_EQ(resampled_destination[i], 0);
|
||
|
}
|
||
|
|
||
|
// Test flush resets the internal state properly.
|
||
|
TEST(SincResamplerTest, DISABLED_SetRatioBench) {
|
||
|
MockSource mock_source;
|
||
|
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
|
||
|
&mock_source);
|
||
|
|
||
|
int64_t start = rtc::TimeNanos();
|
||
|
for (int i = 1; i < 10000; ++i)
|
||
|
resampler.SetRatio(1.0 / i);
|
||
|
double total_time_c_us =
|
||
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
||
|
printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Define platform independent function name for Convolve* tests.
|
||
|
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||
|
#define CONVOLVE_FUNC Convolve_SSE
|
||
|
#elif defined(WEBRTC_ARCH_ARM_V7)
|
||
|
#define CONVOLVE_FUNC Convolve_NEON
|
||
|
#endif
|
||
|
|
||
|
// Ensure various optimized Convolve() methods return the same value. Only run
|
||
|
// this test if other optimized methods exist, otherwise the default Convolve()
|
||
|
// will be tested by the parameterized SincResampler tests below.
|
||
|
#if defined(CONVOLVE_FUNC)
|
||
|
TEST(SincResamplerTest, Convolve) {
|
||
|
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||
|
ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
|
||
|
#elif defined(WEBRTC_ARCH_ARM_V7)
|
||
|
ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
|
||
|
#endif
|
||
|
|
||
|
// Initialize a dummy resampler.
|
||
|
MockSource mock_source;
|
||
|
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
|
||
|
&mock_source);
|
||
|
|
||
|
// The optimized Convolve methods are slightly more precise than Convolve_C(),
|
||
|
// so comparison must be done using an epsilon.
|
||
|
static const double kEpsilon = 0.00000005;
|
||
|
|
||
|
// Use a kernel from SincResampler as input and kernel data, this has the
|
||
|
// benefit of already being properly sized and aligned for Convolve_SSE().
|
||
|
double result = resampler.Convolve_C(
|
||
|
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
double result2 = resampler.CONVOLVE_FUNC(
|
||
|
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
EXPECT_NEAR(result2, result, kEpsilon);
|
||
|
|
||
|
// Test Convolve() w/ unaligned input pointer.
|
||
|
result = resampler.Convolve_C(
|
||
|
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
result2 = resampler.CONVOLVE_FUNC(
|
||
|
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
EXPECT_NEAR(result2, result, kEpsilon);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Benchmark for the various Convolve() methods. Make sure to build with
|
||
|
// branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
|
||
|
// Original benchmarks were run with --convolve-iterations=50000000.
|
||
|
TEST(SincResamplerTest, ConvolveBenchmark) {
|
||
|
// Initialize a dummy resampler.
|
||
|
MockSource mock_source;
|
||
|
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
|
||
|
&mock_source);
|
||
|
|
||
|
// Retrieve benchmark iterations from command line.
|
||
|
// TODO(ajm): Reintroduce this as a command line option.
|
||
|
const int kConvolveIterations = 1000000;
|
||
|
|
||
|
printf("Benchmarking %d iterations:\n", kConvolveIterations);
|
||
|
|
||
|
// Benchmark Convolve_C().
|
||
|
int64_t start = rtc::TimeNanos();
|
||
|
for (int i = 0; i < kConvolveIterations; ++i) {
|
||
|
resampler.Convolve_C(
|
||
|
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
}
|
||
|
double total_time_c_us =
|
||
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
||
|
printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
|
||
|
|
||
|
#if defined(CONVOLVE_FUNC)
|
||
|
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||
|
ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
|
||
|
#elif defined(WEBRTC_ARCH_ARM_V7)
|
||
|
ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
|
||
|
#endif
|
||
|
|
||
|
// Benchmark with unaligned input pointer.
|
||
|
start = rtc::TimeNanos();
|
||
|
for (int j = 0; j < kConvolveIterations; ++j) {
|
||
|
resampler.CONVOLVE_FUNC(
|
||
|
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
}
|
||
|
double total_time_optimized_unaligned_us =
|
||
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
||
|
printf(STRINGIZE(CONVOLVE_FUNC) "(unaligned) took %.2fms; which is %.2fx "
|
||
|
"faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000,
|
||
|
total_time_c_us / total_time_optimized_unaligned_us);
|
||
|
|
||
|
// Benchmark with aligned input pointer.
|
||
|
start = rtc::TimeNanos();
|
||
|
for (int j = 0; j < kConvolveIterations; ++j) {
|
||
|
resampler.CONVOLVE_FUNC(
|
||
|
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
|
||
|
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
|
||
|
}
|
||
|
double total_time_optimized_aligned_us =
|
||
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
||
|
printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx "
|
||
|
"faster than Convolve_C and %.2fx faster than "
|
||
|
STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n",
|
||
|
total_time_optimized_aligned_us / 1000,
|
||
|
total_time_c_us / total_time_optimized_aligned_us,
|
||
|
total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#undef CONVOLVE_FUNC
|
||
|
|
||
|
typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
|
||
|
class SincResamplerTest
|
||
|
: public testing::TestWithParam<SincResamplerTestData> {
|
||
|
public:
|
||
|
SincResamplerTest()
|
||
|
: input_rate_(std::tr1::get<0>(GetParam())),
|
||
|
output_rate_(std::tr1::get<1>(GetParam())),
|
||
|
rms_error_(std::tr1::get<2>(GetParam())),
|
||
|
low_freq_error_(std::tr1::get<3>(GetParam())) {
|
||
|
}
|
||
|
|
||
|
virtual ~SincResamplerTest() {}
|
||
|
|
||
|
protected:
|
||
|
int input_rate_;
|
||
|
int output_rate_;
|
||
|
double rms_error_;
|
||
|
double low_freq_error_;
|
||
|
};
|
||
|
|
||
|
// Tests resampling using a given input and output sample rate.
|
||
|
TEST_P(SincResamplerTest, Resample) {
|
||
|
// Make comparisons using one second of data.
|
||
|
static const double kTestDurationSecs = 1;
|
||
|
const size_t input_samples =
|
||
|
static_cast<size_t>(kTestDurationSecs * input_rate_);
|
||
|
const size_t output_samples =
|
||
|
static_cast<size_t>(kTestDurationSecs * output_rate_);
|
||
|
|
||
|
// Nyquist frequency for the input sampling rate.
|
||
|
const double input_nyquist_freq = 0.5 * input_rate_;
|
||
|
|
||
|
// Source for data to be resampled.
|
||
|
SinusoidalLinearChirpSource resampler_source(
|
||
|
input_rate_, input_samples, input_nyquist_freq, 0);
|
||
|
|
||
|
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
|
||
|
SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
|
||
|
&resampler_source);
|
||
|
|
||
|
// Force an update to the sample rate ratio to ensure dyanmic sample rate
|
||
|
// changes are working correctly.
|
||
|
std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
|
||
|
memcpy(kernel.get(), resampler.get_kernel_for_testing(),
|
||
|
SincResampler::kKernelStorageSize);
|
||
|
resampler.SetRatio(M_PI);
|
||
|
ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
|
||
|
SincResampler::kKernelStorageSize));
|
||
|
resampler.SetRatio(io_ratio);
|
||
|
ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
|
||
|
SincResampler::kKernelStorageSize));
|
||
|
|
||
|
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
|
||
|
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
|
||
|
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
|
||
|
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
|
||
|
|
||
|
// Generate resampled signal.
|
||
|
resampler.Resample(output_samples, resampled_destination.get());
|
||
|
|
||
|
// Generate pure signal.
|
||
|
SinusoidalLinearChirpSource pure_source(
|
||
|
output_rate_, output_samples, input_nyquist_freq, 0);
|
||
|
pure_source.Run(output_samples, pure_destination.get());
|
||
|
|
||
|
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
|
||
|
// we refer to as low and high.
|
||
|
static const double kLowFrequencyNyquistRange = 0.7;
|
||
|
static const double kHighFrequencyNyquistRange = 0.9;
|
||
|
|
||
|
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
|
||
|
double sum_of_squares = 0;
|
||
|
double low_freq_max_error = 0;
|
||
|
double high_freq_max_error = 0;
|
||
|
int minimum_rate = std::min(input_rate_, output_rate_);
|
||
|
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
|
||
|
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
|
||
|
for (size_t i = 0; i < output_samples; ++i) {
|
||
|
double error = fabs(resampled_destination[i] - pure_destination[i]);
|
||
|
|
||
|
if (pure_source.Frequency(i) < low_frequency_range) {
|
||
|
if (error > low_freq_max_error)
|
||
|
low_freq_max_error = error;
|
||
|
} else if (pure_source.Frequency(i) < high_frequency_range) {
|
||
|
if (error > high_freq_max_error)
|
||
|
high_freq_max_error = error;
|
||
|
}
|
||
|
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
|
||
|
|
||
|
sum_of_squares += error * error;
|
||
|
}
|
||
|
|
||
|
double rms_error = sqrt(sum_of_squares / output_samples);
|
||
|
|
||
|
// Convert each error to dbFS.
|
||
|
#define DBFS(x) 20 * log10(x)
|
||
|
rms_error = DBFS(rms_error);
|
||
|
low_freq_max_error = DBFS(low_freq_max_error);
|
||
|
high_freq_max_error = DBFS(high_freq_max_error);
|
||
|
|
||
|
EXPECT_LE(rms_error, rms_error_);
|
||
|
EXPECT_LE(low_freq_max_error, low_freq_error_);
|
||
|
|
||
|
// All conversions currently have a high frequency error around -6 dbFS.
|
||
|
static const double kHighFrequencyMaxError = -6.02;
|
||
|
EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
|
||
|
}
|
||
|
|
||
|
// Almost all conversions have an RMS error of around -14 dbFS.
|
||
|
static const double kResamplingRMSError = -14.58;
|
||
|
|
||
|
// Thresholds chosen arbitrarily based on what each resampling reported during
|
||
|
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
|
||
|
INSTANTIATE_TEST_CASE_P(
|
||
|
SincResamplerTest, SincResamplerTest, testing::Values(
|
||
|
// To 44.1kHz
|
||
|
std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
|
||
|
std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
|
||
|
std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
|
||
|
std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
|
||
|
std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
|
||
|
std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
|
||
|
std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
|
||
|
std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
|
||
|
std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
|
||
|
|
||
|
// To 48kHz
|
||
|
std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
|
||
|
std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
|
||
|
std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
|
||
|
std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
|
||
|
std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
|
||
|
std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
|
||
|
std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
|
||
|
std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
|
||
|
std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
|
||
|
|
||
|
// To 96kHz
|
||
|
std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
|
||
|
std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
|
||
|
std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
|
||
|
std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
|
||
|
std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
|
||
|
std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
|
||
|
std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
|
||
|
std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
|
||
|
std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
|
||
|
|
||
|
// To 192kHz
|
||
|
std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
|
||
|
std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
|
||
|
std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
|
||
|
std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
|
||
|
std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
|
||
|
std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
|
||
|
std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
|
||
|
std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
|
||
|
std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
|
||
|
|
||
|
} // namespace webrtc
|