175 lines
4.5 KiB
C
175 lines
4.5 KiB
C
|
/*
|
||
|
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#ifndef WEBRTC_BASE_ROLLINGACCUMULATOR_H_
|
||
|
#define WEBRTC_BASE_ROLLINGACCUMULATOR_H_
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "webrtc/base/common.h"
|
||
|
#include "webrtc/base/constructormagic.h"
|
||
|
|
||
|
namespace rtc {
|
||
|
|
||
|
// RollingAccumulator stores and reports statistics
|
||
|
// over N most recent samples.
|
||
|
//
|
||
|
// T is assumed to be an int, long, double or float.
|
||
|
template<typename T>
|
||
|
class RollingAccumulator {
|
||
|
public:
|
||
|
explicit RollingAccumulator(size_t max_count)
|
||
|
: samples_(max_count) {
|
||
|
Reset();
|
||
|
}
|
||
|
~RollingAccumulator() {
|
||
|
}
|
||
|
|
||
|
size_t max_count() const {
|
||
|
return samples_.size();
|
||
|
}
|
||
|
|
||
|
size_t count() const {
|
||
|
return count_;
|
||
|
}
|
||
|
|
||
|
void Reset() {
|
||
|
count_ = 0U;
|
||
|
next_index_ = 0U;
|
||
|
sum_ = 0.0;
|
||
|
sum_2_ = 0.0;
|
||
|
max_ = T();
|
||
|
max_stale_ = false;
|
||
|
min_ = T();
|
||
|
min_stale_ = false;
|
||
|
}
|
||
|
|
||
|
void AddSample(T sample) {
|
||
|
if (count_ == max_count()) {
|
||
|
// Remove oldest sample.
|
||
|
T sample_to_remove = samples_[next_index_];
|
||
|
sum_ -= sample_to_remove;
|
||
|
sum_2_ -= static_cast<double>(sample_to_remove) * sample_to_remove;
|
||
|
if (sample_to_remove >= max_) {
|
||
|
max_stale_ = true;
|
||
|
}
|
||
|
if (sample_to_remove <= min_) {
|
||
|
min_stale_ = true;
|
||
|
}
|
||
|
} else {
|
||
|
// Increase count of samples.
|
||
|
++count_;
|
||
|
}
|
||
|
// Add new sample.
|
||
|
samples_[next_index_] = sample;
|
||
|
sum_ += sample;
|
||
|
sum_2_ += static_cast<double>(sample) * sample;
|
||
|
if (count_ == 1 || sample >= max_) {
|
||
|
max_ = sample;
|
||
|
max_stale_ = false;
|
||
|
}
|
||
|
if (count_ == 1 || sample <= min_) {
|
||
|
min_ = sample;
|
||
|
min_stale_ = false;
|
||
|
}
|
||
|
// Update next_index_.
|
||
|
next_index_ = (next_index_ + 1) % max_count();
|
||
|
}
|
||
|
|
||
|
T ComputeSum() const {
|
||
|
return static_cast<T>(sum_);
|
||
|
}
|
||
|
|
||
|
double ComputeMean() const {
|
||
|
if (count_ == 0) {
|
||
|
return 0.0;
|
||
|
}
|
||
|
return sum_ / count_;
|
||
|
}
|
||
|
|
||
|
T ComputeMax() const {
|
||
|
if (max_stale_) {
|
||
|
ASSERT(count_ > 0 &&
|
||
|
"It shouldn't be possible for max_stale_ && count_ == 0");
|
||
|
max_ = samples_[next_index_];
|
||
|
for (size_t i = 1u; i < count_; i++) {
|
||
|
max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]);
|
||
|
}
|
||
|
max_stale_ = false;
|
||
|
}
|
||
|
return max_;
|
||
|
}
|
||
|
|
||
|
T ComputeMin() const {
|
||
|
if (min_stale_) {
|
||
|
ASSERT(count_ > 0 &&
|
||
|
"It shouldn't be possible for min_stale_ && count_ == 0");
|
||
|
min_ = samples_[next_index_];
|
||
|
for (size_t i = 1u; i < count_; i++) {
|
||
|
min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]);
|
||
|
}
|
||
|
min_stale_ = false;
|
||
|
}
|
||
|
return min_;
|
||
|
}
|
||
|
|
||
|
// O(n) time complexity.
|
||
|
// Weights nth sample with weight (learning_rate)^n. Learning_rate should be
|
||
|
// between (0.0, 1.0], otherwise the non-weighted mean is returned.
|
||
|
double ComputeWeightedMean(double learning_rate) const {
|
||
|
if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) {
|
||
|
return ComputeMean();
|
||
|
}
|
||
|
double weighted_mean = 0.0;
|
||
|
double current_weight = 1.0;
|
||
|
double weight_sum = 0.0;
|
||
|
const size_t max_size = max_count();
|
||
|
for (size_t i = 0; i < count_; ++i) {
|
||
|
current_weight *= learning_rate;
|
||
|
weight_sum += current_weight;
|
||
|
// Add max_size to prevent underflow.
|
||
|
size_t index = (next_index_ + max_size - i - 1) % max_size;
|
||
|
weighted_mean += current_weight * samples_[index];
|
||
|
}
|
||
|
return weighted_mean / weight_sum;
|
||
|
}
|
||
|
|
||
|
// Compute estimated variance. Estimation is more accurate
|
||
|
// as the number of samples grows.
|
||
|
double ComputeVariance() const {
|
||
|
if (count_ == 0) {
|
||
|
return 0.0;
|
||
|
}
|
||
|
// Var = E[x^2] - (E[x])^2
|
||
|
double count_inv = 1.0 / count_;
|
||
|
double mean_2 = sum_2_ * count_inv;
|
||
|
double mean = sum_ * count_inv;
|
||
|
return mean_2 - (mean * mean);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
size_t count_;
|
||
|
size_t next_index_;
|
||
|
double sum_; // Sum(x) - double to avoid overflow
|
||
|
double sum_2_; // Sum(x*x) - double to avoid overflow
|
||
|
mutable T max_;
|
||
|
mutable bool max_stale_;
|
||
|
mutable T min_;
|
||
|
mutable bool min_stale_;
|
||
|
std::vector<T> samples_;
|
||
|
|
||
|
RTC_DISALLOW_COPY_AND_ASSIGN(RollingAccumulator);
|
||
|
};
|
||
|
|
||
|
} // namespace rtc
|
||
|
|
||
|
#endif // WEBRTC_BASE_ROLLINGACCUMULATOR_H_
|