184 lines
6.2 KiB
C++
184 lines
6.2 KiB
C++
|
/*
|
||
|
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "webrtc/base/messagedigest.h"
|
||
|
|
||
|
#include <memory>
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "webrtc/base/basictypes.h"
|
||
|
#include "webrtc/base/sslconfig.h"
|
||
|
#if SSL_USE_OPENSSL
|
||
|
#include "webrtc/base/openssldigest.h"
|
||
|
#else
|
||
|
#include "webrtc/base/md5digest.h"
|
||
|
#include "webrtc/base/sha1digest.h"
|
||
|
#endif
|
||
|
#include "webrtc/base/stringencode.h"
|
||
|
|
||
|
namespace rtc {
|
||
|
|
||
|
// From RFC 4572.
|
||
|
const char DIGEST_MD5[] = "md5";
|
||
|
const char DIGEST_SHA_1[] = "sha-1";
|
||
|
const char DIGEST_SHA_224[] = "sha-224";
|
||
|
const char DIGEST_SHA_256[] = "sha-256";
|
||
|
const char DIGEST_SHA_384[] = "sha-384";
|
||
|
const char DIGEST_SHA_512[] = "sha-512";
|
||
|
|
||
|
static const size_t kBlockSize = 64; // valid for SHA-256 and down
|
||
|
|
||
|
MessageDigest* MessageDigestFactory::Create(const std::string& alg) {
|
||
|
#if SSL_USE_OPENSSL
|
||
|
MessageDigest* digest = new OpenSSLDigest(alg);
|
||
|
if (digest->Size() == 0) { // invalid algorithm
|
||
|
delete digest;
|
||
|
digest = NULL;
|
||
|
}
|
||
|
return digest;
|
||
|
#else
|
||
|
MessageDigest* digest = NULL;
|
||
|
if (alg == DIGEST_MD5) {
|
||
|
digest = new Md5Digest();
|
||
|
} else if (alg == DIGEST_SHA_1) {
|
||
|
digest = new Sha1Digest();
|
||
|
}
|
||
|
return digest;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool IsFips180DigestAlgorithm(const std::string& alg) {
|
||
|
// These are the FIPS 180 algorithms. According to RFC 4572 Section 5,
|
||
|
// "Self-signed certificates (for which legacy certificates are not a
|
||
|
// consideration) MUST use one of the FIPS 180 algorithms (SHA-1,
|
||
|
// SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm,
|
||
|
// and thus also MUST use it to calculate certificate fingerprints."
|
||
|
return alg == DIGEST_SHA_1 ||
|
||
|
alg == DIGEST_SHA_224 ||
|
||
|
alg == DIGEST_SHA_256 ||
|
||
|
alg == DIGEST_SHA_384 ||
|
||
|
alg == DIGEST_SHA_512;
|
||
|
}
|
||
|
|
||
|
size_t ComputeDigest(MessageDigest* digest, const void* input, size_t in_len,
|
||
|
void* output, size_t out_len) {
|
||
|
digest->Update(input, in_len);
|
||
|
return digest->Finish(output, out_len);
|
||
|
}
|
||
|
|
||
|
size_t ComputeDigest(const std::string& alg, const void* input, size_t in_len,
|
||
|
void* output, size_t out_len) {
|
||
|
std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
|
||
|
return (digest) ?
|
||
|
ComputeDigest(digest.get(), input, in_len, output, out_len) :
|
||
|
0;
|
||
|
}
|
||
|
|
||
|
std::string ComputeDigest(MessageDigest* digest, const std::string& input) {
|
||
|
std::unique_ptr<char[]> output(new char[digest->Size()]);
|
||
|
ComputeDigest(digest, input.data(), input.size(),
|
||
|
output.get(), digest->Size());
|
||
|
return hex_encode(output.get(), digest->Size());
|
||
|
}
|
||
|
|
||
|
bool ComputeDigest(const std::string& alg, const std::string& input,
|
||
|
std::string* output) {
|
||
|
std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
|
||
|
if (!digest) {
|
||
|
return false;
|
||
|
}
|
||
|
*output = ComputeDigest(digest.get(), input);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
std::string ComputeDigest(const std::string& alg, const std::string& input) {
|
||
|
std::string output;
|
||
|
ComputeDigest(alg, input, &output);
|
||
|
return output;
|
||
|
}
|
||
|
|
||
|
// Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text))
|
||
|
size_t ComputeHmac(MessageDigest* digest,
|
||
|
const void* key, size_t key_len,
|
||
|
const void* input, size_t in_len,
|
||
|
void* output, size_t out_len) {
|
||
|
// We only handle algorithms with a 64-byte blocksize.
|
||
|
// TODO: Add BlockSize() method to MessageDigest.
|
||
|
size_t block_len = kBlockSize;
|
||
|
if (digest->Size() > 32) {
|
||
|
return 0;
|
||
|
}
|
||
|
// Copy the key to a block-sized buffer to simplify padding.
|
||
|
// If the key is longer than a block, hash it and use the result instead.
|
||
|
std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]);
|
||
|
if (key_len > block_len) {
|
||
|
ComputeDigest(digest, key, key_len, new_key.get(), block_len);
|
||
|
memset(new_key.get() + digest->Size(), 0, block_len - digest->Size());
|
||
|
} else {
|
||
|
memcpy(new_key.get(), key, key_len);
|
||
|
memset(new_key.get() + key_len, 0, block_len - key_len);
|
||
|
}
|
||
|
// Set up the padding from the key, salting appropriately for each padding.
|
||
|
std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]);
|
||
|
std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]);
|
||
|
for (size_t i = 0; i < block_len; ++i) {
|
||
|
o_pad[i] = 0x5c ^ new_key[i];
|
||
|
i_pad[i] = 0x36 ^ new_key[i];
|
||
|
}
|
||
|
// Inner hash; hash the inner padding, and then the input buffer.
|
||
|
std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]);
|
||
|
digest->Update(i_pad.get(), block_len);
|
||
|
digest->Update(input, in_len);
|
||
|
digest->Finish(inner.get(), digest->Size());
|
||
|
// Outer hash; hash the outer padding, and then the result of the inner hash.
|
||
|
digest->Update(o_pad.get(), block_len);
|
||
|
digest->Update(inner.get(), digest->Size());
|
||
|
return digest->Finish(output, out_len);
|
||
|
}
|
||
|
|
||
|
size_t ComputeHmac(const std::string& alg, const void* key, size_t key_len,
|
||
|
const void* input, size_t in_len,
|
||
|
void* output, size_t out_len) {
|
||
|
std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
|
||
|
if (!digest) {
|
||
|
return 0;
|
||
|
}
|
||
|
return ComputeHmac(digest.get(), key, key_len,
|
||
|
input, in_len, output, out_len);
|
||
|
}
|
||
|
|
||
|
std::string ComputeHmac(MessageDigest* digest, const std::string& key,
|
||
|
const std::string& input) {
|
||
|
std::unique_ptr<char[]> output(new char[digest->Size()]);
|
||
|
ComputeHmac(digest, key.data(), key.size(),
|
||
|
input.data(), input.size(), output.get(), digest->Size());
|
||
|
return hex_encode(output.get(), digest->Size());
|
||
|
}
|
||
|
|
||
|
bool ComputeHmac(const std::string& alg, const std::string& key,
|
||
|
const std::string& input, std::string* output) {
|
||
|
std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
|
||
|
if (!digest) {
|
||
|
return false;
|
||
|
}
|
||
|
*output = ComputeHmac(digest.get(), key, input);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
std::string ComputeHmac(const std::string& alg, const std::string& key,
|
||
|
const std::string& input) {
|
||
|
std::string output;
|
||
|
ComputeHmac(alg, key, input, &output);
|
||
|
return output;
|
||
|
}
|
||
|
|
||
|
} // namespace rtc
|