rhubarb-lip-sync/rhubarb/src/recognition/PocketSphinxRecognizer.cpp

343 lines
11 KiB
C++
Raw Normal View History

#include "PocketSphinxRecognizer.h"
#include <regex>
2016-02-29 19:58:58 +00:00
#include <gsl_util.h>
#include "audio/AudioSegment.h"
#include "audio/SampleRateConverter.h"
#include "languageModels.h"
#include "tokenization.h"
#include "g2p.h"
#include "time/ContinuousTimeline.h"
#include "audio/processing.h"
#include "time/timedLogging.h"
2015-12-21 12:09:09 +00:00
extern "C" {
#include <state_align_search.h>
2015-12-21 12:09:09 +00:00
}
using std::runtime_error;
using std::invalid_argument;
using std::unique_ptr;
using std::string;
using std::vector;
using std::map;
using std::filesystem::path;
using std::regex;
using std::regex_replace;
using boost::optional;
using std::array;
bool dictionaryContains(dict_t& dictionary, const string& word) {
return dict_wordid(&dictionary, word.c_str()) != BAD_S3WID;
}
s3wid_t getWordId(const string& word, dict_t& dictionary) {
const s3wid_t wordId = dict_wordid(&dictionary, word.c_str());
if (wordId == BAD_S3WID) throw invalid_argument(fmt::format("Unknown word '{}'.", word));
return wordId;
}
void addMissingDictionaryWords(const vector<string>& words, ps_decoder_t& decoder) {
map<string, string> missingPronunciations;
for (const string& word : words) {
if (!dictionaryContains(*decoder.dict, word)) {
string pronunciation;
for (Phone phone : wordToPhones(word)) {
if (pronunciation.length() > 0) pronunciation += " ";
pronunciation += PhoneConverter::get().toString(phone);
}
missingPronunciations[word] = pronunciation;
}
}
for (auto it = missingPronunciations.begin(); it != missingPronunciations.end(); ++it) {
const bool isLast = it == --missingPronunciations.end();
logging::infoFormat("Unknown word '{}'. Guessing pronunciation '{}'.", it->first, it->second);
ps_add_word(&decoder, it->first.c_str(), it->second.c_str(), isLast);
}
}
lambda_unique_ptr<ngram_model_t> createDefaultLanguageModel(ps_decoder_t& decoder) {
path modelPath = getSphinxModelDirectory() / "en-us.lm.bin";
lambda_unique_ptr<ngram_model_t> result(
ngram_model_read(decoder.config, modelPath.u8string().c_str(), NGRAM_AUTO, decoder.lmath),
[](ngram_model_t* lm) { ngram_model_free(lm); });
if (!result) {
throw runtime_error(fmt::format("Error reading language model from {}.", modelPath.u8string()));
}
return result;
}
lambda_unique_ptr<ngram_model_t> createDialogLanguageModel(
ps_decoder_t& decoder,
const string& dialog
) {
// Split dialog into normalized words
vector<string> words = tokenizeText(
dialog,
[&](const string& word) { return dictionaryContains(*decoder.dict, word); }
);
// Add dialog-specific words to the dictionary
addMissingDictionaryWords(words, decoder);
// Create dialog-specific language model
words.insert(words.begin(), "<s>");
words.emplace_back("</s>");
return createLanguageModel(words, decoder);
}
lambda_unique_ptr<ngram_model_t> createBiasedLanguageModel(
ps_decoder_t& decoder,
const string& dialog
) {
auto defaultLanguageModel = createDefaultLanguageModel(decoder);
auto dialogLanguageModel = createDialogLanguageModel(decoder, dialog);
constexpr int modelCount = 2;
array<ngram_model_t*, modelCount> languageModels {
defaultLanguageModel.get(),
dialogLanguageModel.get()
};
array<const char*, modelCount> modelNames { "defaultLM", "dialogLM" };
array<float, modelCount> modelWeights { 0.1f, 0.9f };
lambda_unique_ptr<ngram_model_t> result(
ngram_model_set_init(
nullptr,
languageModels.data(),
const_cast<char**>(modelNames.data()),
modelWeights.data(),
modelCount
),
[](ngram_model_t* lm) { ngram_model_free(lm); });
if (!result) {
throw runtime_error("Error creating biased language model.");
}
return result;
}
static lambda_unique_ptr<ps_decoder_t> createDecoder(optional<std::string> dialog) {
2016-06-26 19:05:09 +00:00
lambda_unique_ptr<cmd_ln_t> config(
cmd_ln_init(
nullptr, ps_args(), true,
// Set acoustic model
"-hmm", (getSphinxModelDirectory() / "acoustic-model").u8string().c_str(),
2016-06-26 19:05:09 +00:00
// Set pronunciation dictionary
"-dict", (getSphinxModelDirectory() / "cmudict-en-us.dict").u8string().c_str(),
// Add noise against zero silence
// (see http://cmusphinx.sourceforge.net/wiki/faq#qwhy_my_accuracy_is_poor)
2016-06-26 19:05:09 +00:00
"-dither", "yes",
// Disable VAD -- we're doing that ourselves
"-remove_silence", "no",
// Perform per-utterance cepstral mean normalization
"-cmn", "batch",
2016-06-26 19:05:09 +00:00
nullptr),
[](cmd_ln_t* config) { cmd_ln_free_r(config); });
if (!config) throw runtime_error("Error creating configuration.");
lambda_unique_ptr<ps_decoder_t> decoder(
ps_init(config.get()),
[](ps_decoder_t* recognizer) { ps_free(recognizer); });
if (!decoder) throw runtime_error("Error creating speech decoder.");
// Set language model
lambda_unique_ptr<ngram_model_t> languageModel(dialog
? createBiasedLanguageModel(*decoder, *dialog)
: createDefaultLanguageModel(*decoder));
2016-06-26 19:05:09 +00:00
ps_set_lm(decoder.get(), "lm", languageModel.get());
ps_set_search(decoder.get(), "lm");
return decoder;
}
optional<Timeline<Phone>> getPhoneAlignment(
const vector<s3wid_t>& wordIds,
const vector<int16_t>& audioBuffer,
ps_decoder_t& decoder)
{
if (wordIds.empty()) return boost::none;
// Create alignment list
lambda_unique_ptr<ps_alignment_t> alignment(
ps_alignment_init(decoder.d2p),
[](ps_alignment_t* alignment) { ps_alignment_free(alignment); });
if (!alignment) throw runtime_error("Error creating alignment.");
for (s3wid_t wordId : wordIds) {
// Add word. Initial value for duration is ignored.
ps_alignment_add_word(alignment.get(), wordId, 0);
2016-09-29 08:44:34 +00:00
}
int error = ps_alignment_populate(alignment.get());
if (error) throw runtime_error("Error populating alignment struct.");
2016-09-29 08:44:34 +00:00
// Create search structure
acmod_t* acousticModel = decoder.acmod;
lambda_unique_ptr<ps_search_t> search(
state_align_search_init("state_align", decoder.config, acousticModel, alignment.get()),
[](ps_search_t* search) { ps_search_free(search); });
if (!search) throw runtime_error("Error creating search.");
// Start recognition
error = acmod_start_utt(acousticModel);
if (error) throw runtime_error("Error starting utterance processing for alignment.");
{
// Eventually end recognition
auto endRecognition = gsl::finally([&]() { acmod_end_utt(acousticModel); });
// Start search
ps_search_start(search.get());
// Process entire audio clip
const int16* nextSample = audioBuffer.data();
size_t remainingSamples = audioBuffer.size();
const bool fullUtterance = true;
while (acmod_process_raw(acousticModel, &nextSample, &remainingSamples, fullUtterance) > 0) {
while (acousticModel->n_feat_frame > 0) {
ps_search_step(search.get(), acousticModel->output_frame);
acmod_advance(acousticModel);
}
2016-09-29 08:44:34 +00:00
}
// End search
error = ps_search_finish(search.get());
if (error) return boost::none;
2016-09-29 08:44:34 +00:00
}
// Extract phones with timestamps
char** phoneNames = decoder.dict->mdef->ciname;
Timeline<Phone> result;
for (
ps_alignment_iter_t* it = ps_alignment_phones(alignment.get());
it;
it = ps_alignment_iter_next(it)
) {
// Get phone
ps_alignment_entry_t* phoneEntry = ps_alignment_iter_get(it);
const s3cipid_t phoneId = phoneEntry->id.pid.cipid;
string phoneName = phoneNames[phoneId];
if (phoneName == "SIL") continue;
// Add entry
centiseconds start(phoneEntry->start);
centiseconds duration(phoneEntry->duration);
Phone phone = PhoneConverter::get().parse(phoneName);
if (phone == Phone::AH && duration < 6_cs) {
// Heuristic: < 6_cs is schwa. PocketSphinx doesn't differentiate.
phone = Phone::Schwa;
}
const Timed<Phone> timedPhone(start, start + duration, phone);
result.set(timedPhone);
}
return result;
2016-09-29 08:44:34 +00:00
}
// Some words have multiple pronunciations, one of which results in better animation than the others.
// This function returns the optimal pronunciation for a select set of these words.
string fixPronunciation(const string& word) {
const static map<string, string> replacements {
{ "into(2)", "into" },
{ "to(2)", "to" },
{ "to(3)", "to" },
{ "today(2)", "today" },
{ "tomorrow(2)", "tomorrow" },
{ "tonight(2)", "tonight" }
};
const auto pair = replacements.find(word);
return pair != replacements.end() ? pair->second : word;
}
static Timeline<Phone> utteranceToPhones(
const AudioClip& audioClip,
2016-09-29 08:44:34 +00:00
TimeRange utteranceTimeRange,
ps_decoder_t& decoder,
ProgressSink& utteranceProgressSink
) {
ProgressMerger utteranceProgressMerger(utteranceProgressSink);
2019-01-03 10:57:53 +00:00
ProgressSink& wordRecognitionProgressSink =
utteranceProgressMerger.addSource("word recognition (PocketSphinx recognizer)", 1.0);
ProgressSink& alignmentProgressSink =
utteranceProgressMerger.addSource("alignment (PocketSphinx recognizer)", 0.5);
// Pad time range to give PocketSphinx some breathing room
2016-09-29 08:44:34 +00:00
TimeRange paddedTimeRange = utteranceTimeRange;
const centiseconds padding(3);
paddedTimeRange.grow(padding);
paddedTimeRange.trim(audioClip.getTruncatedRange());
const unique_ptr<AudioClip> clipSegment = audioClip.clone()
| segment(paddedTimeRange)
| resample(sphinxSampleRate);
const auto audioBuffer = copyTo16bitBuffer(*clipSegment);
// Get words
BoundedTimeline<string> words = recognizeWords(audioBuffer, decoder);
wordRecognitionProgressSink.reportProgress(1.0);
2016-09-29 08:44:34 +00:00
// Log utterance text
string text;
for (auto& timedWord : words) {
string word = timedWord.getValue();
// Skip details
if (word == "<s>" || word == "</s>" || word == "<sil>") {
continue;
}
word = regex_replace(word, regex("\\(\\d\\)"), "");
if (!text.empty()) {
2016-09-29 08:44:34 +00:00
text += " ";
}
text += word;
}
logTimedEvent("utterance", utteranceTimeRange, text);
2016-09-29 08:44:34 +00:00
// Log words
for (Timed<string> timedWord : words) {
2016-09-29 08:44:34 +00:00
timedWord.getTimeRange().shift(paddedTimeRange.getStart());
logTimedEvent("word", timedWord);
}
2016-09-29 08:44:34 +00:00
// Convert word strings to word IDs using dictionary
vector<s3wid_t> wordIds;
for (const auto& timedWord : words) {
const string fixedWord = fixPronunciation(timedWord.getValue());
wordIds.push_back(getWordId(fixedWord, *decoder.dict));
}
// Align the words' phones with speech
#if BOOST_VERSION < 105600 // Support legacy syntax
#define value_or get_value_or
#endif
2016-09-29 08:44:34 +00:00
Timeline<Phone> utterancePhones = getPhoneAlignment(wordIds, audioBuffer, decoder)
.value_or(ContinuousTimeline<Phone>(clipSegment->getTruncatedRange(), Phone::Noise));
alignmentProgressSink.reportProgress(1.0);
2016-09-29 08:44:34 +00:00
utterancePhones.shift(paddedTimeRange.getStart());
// Log raw phones
for (const auto& timedPhone : utterancePhones) {
logTimedEvent("rawPhone", timedPhone);
}
2016-09-29 08:44:34 +00:00
// Guess positions of noise sounds
JoiningTimeline<void> noiseSounds = getNoiseSounds(utteranceTimeRange, utterancePhones);
2016-09-29 08:44:34 +00:00
for (const auto& noiseSound : noiseSounds) {
utterancePhones.set(noiseSound.getTimeRange(), Phone::Noise);
}
2016-09-29 08:44:34 +00:00
// Log phones
for (const auto& timedPhone : utterancePhones) {
logTimedEvent("phone", timedPhone);
}
2016-09-29 08:44:34 +00:00
return utterancePhones;
}
BoundedTimeline<Phone> PocketSphinxRecognizer::recognizePhones(
const AudioClip& inputAudioClip,
optional<std::string> dialog,
int maxThreadCount,
ProgressSink& progressSink
) const {
return ::recognizePhones(
inputAudioClip, dialog, &createDecoder, &utteranceToPhones, maxThreadCount, progressSink);
}