rhubarb-lip-sync/src/phoneExtraction.cpp

383 lines
13 KiB
C++
Raw Normal View History

#include <iostream>
#include <boost/filesystem.hpp>
#include "phoneExtraction.h"
#include "audio/SampleRateConverter.h"
#include "platformTools.h"
#include "tools.h"
#include <format.h>
#include <s3types.h>
#include <regex>
2016-02-29 19:58:58 +00:00
#include <gsl_util.h>
#include <logging.h>
#include <audio/DCOffset.h>
2016-04-09 20:07:25 +00:00
#include <Timeline.h>
#include <audio/voiceActivityDetection.h>
#include <audio/AudioStreamSegment.h>
#include "languageModels.h"
#include "tokenization.h"
#include "g2p.h"
#include "ContinuousTimeline.h"
2015-12-21 12:09:09 +00:00
extern "C" {
#include <pocketsphinx.h>
#include <sphinxbase/err.h>
#include <ps_alignment.h>
#include <state_align_search.h>
#include <pocketsphinx_internal.h>
2015-12-21 12:09:09 +00:00
}
using std::runtime_error;
using std::invalid_argument;
using std::unique_ptr;
using std::shared_ptr;
using std::string;
using std::vector;
using std::map;
using boost::filesystem::path;
2016-01-08 09:53:35 +00:00
using std::function;
using std::regex;
using std::regex_replace;
2016-03-01 20:57:05 +00:00
using std::chrono::duration;
using boost::optional;
using std::u32string;
constexpr int sphinxSampleRate = 16000;
const path& getSphinxModelDirectory() {
static path sphinxModelDirectory(getBinDirectory() / "res/sphinx");
return sphinxModelDirectory;
}
lambda_unique_ptr<ps_decoder_t> createDecoder() {
lambda_unique_ptr<cmd_ln_t> config(
cmd_ln_init(
nullptr, ps_args(), true,
// Set acoustic model
"-hmm", (getSphinxModelDirectory() / "acoustic-model").string().c_str(),
// Set pronunciation dictionary
"-dict", (getSphinxModelDirectory() / "cmudict-en-us.dict").string().c_str(),
// Add noise against zero silence (see http://cmusphinx.sourceforge.net/wiki/faq#qwhy_my_accuracy_is_poor)
"-dither", "yes",
nullptr),
[](cmd_ln_t* config) { cmd_ln_free_r(config); });
if (!config) throw runtime_error("Error creating configuration.");
lambda_unique_ptr<ps_decoder_t> recognizer(
ps_init(config.get()),
[](ps_decoder_t* recognizer) { ps_free(recognizer); });
if (!recognizer) throw runtime_error("Error creating speech decoder.");
return recognizer;
}
// Converts a float in the range -1..1 to a signed 16-bit int
int16_t floatSampleToInt16(float sample) {
sample = std::max(sample, -1.0f);
sample = std::min(sample, 1.0f);
return static_cast<int16_t>(((sample + 1) / 2) * (INT16_MAX - INT16_MIN) + INT16_MIN);
}
void processAudioStream(AudioStream& audioStream16kHz, function<void(const vector<int16_t>&)> processBuffer, ProgressSink& progressSink) {
// Process entire sound stream
vector<int16_t> buffer;
const int capacity = 1600; // 0.1 second capacity
buffer.reserve(capacity);
int sampleCount = 0;
do {
// Read to buffer
buffer.clear();
while (buffer.size() < capacity && !audioStream16kHz.endOfStream()) {
// Read sample
float floatSample = audioStream16kHz.readSample();
int16_t sample = floatSampleToInt16(floatSample);
buffer.push_back(sample);
}
// Process buffer
processBuffer(buffer);
sampleCount += buffer.size();
progressSink.reportProgress(static_cast<double>(sampleCount) / audioStream16kHz.getSampleCount());
} while (buffer.size());
}
logging::Level ConvertSphinxErrorLevel(err_lvl_t errorLevel) {
switch (errorLevel) {
case ERR_DEBUG:
case ERR_INFO:
case ERR_INFOCONT:
return logging::Level::Trace;
case ERR_WARN:
return logging::Level::Warn;
case ERR_ERROR:
return logging::Level::Error;
case ERR_FATAL:
return logging::Level::Fatal;
default:
throw invalid_argument("Unknown log level.");
}
}
void sphinxLogCallback(void* user_data, err_lvl_t errorLevel, const char* format, ...) {
UNUSED(user_data);
2015-11-19 21:48:17 +00:00
// Create varArgs list
va_list args;
va_start(args, format);
2016-02-29 19:58:58 +00:00
auto _ = gsl::finally([&args]() { va_end(args); });
2015-11-19 21:48:17 +00:00
// Format message
const int initialSize = 256;
vector<char> chars(initialSize);
2015-11-19 21:48:17 +00:00
bool success = false;
while (!success) {
int charsWritten = vsnprintf(chars.data(), chars.size(), format, args);
if (charsWritten < 0) throw runtime_error("Error formatting Pocketsphinx log message.");
success = charsWritten < static_cast<int>(chars.size());
if (!success) chars.resize(chars.size() * 2);
}
regex waste("^(DEBUG|INFO|INFOCONT|WARN|ERROR|FATAL): ");
string message = regex_replace(chars.data(), waste, "", std::regex_constants::format_first_only);
2015-11-19 21:48:17 +00:00
boost::algorithm::trim(message);
logging::Level logLevel = ConvertSphinxErrorLevel(errorLevel);
logging::log(logLevel, message);
2015-11-19 21:48:17 +00:00
}
BoundedTimeline<string> recognizeWords(unique_ptr<AudioStream> audioStream, ps_decoder_t& decoder, ProgressSink& progressSink) {
// Convert audio stream to the exact format PocketSphinx requires
audioStream = convertSampleRate(std::move(audioStream), sphinxSampleRate);
// Restart timing at 0
ps_start_stream(&decoder);
// Start recognition
int error = ps_start_utt(&decoder);
if (error) throw runtime_error("Error starting utterance processing for word recognition.");
// Process entire sound stream
auto processBuffer = [&decoder](const vector<int16_t>& buffer) {
int searchedFrameCount = ps_process_raw(&decoder, buffer.data(), buffer.size(), false, false);
if (searchedFrameCount < 0) throw runtime_error("Error analyzing raw audio data for word recognition.");
};
processAudioStream(*audioStream.get(), processBuffer, progressSink);
// End recognition
error = ps_end_utt(&decoder);
if (error) throw runtime_error("Error ending utterance processing for word recognition.");
// Collect words
BoundedTimeline<string> result(audioStream->getTruncatedRange());
2016-06-19 19:18:40 +00:00
for (ps_seg_t* it = ps_seg_iter(&decoder); it; it = ps_seg_next(it)) {
const char* word = ps_seg_word(it);
2016-03-01 20:57:05 +00:00
int firstFrame, lastFrame;
ps_seg_frames(it, &firstFrame, &lastFrame);
result.set(centiseconds(firstFrame), centiseconds(lastFrame + 1), word);
}
return result;
}
s3wid_t getWordId(const string& word, dict_t& dictionary) {
s3wid_t wordId = dict_wordid(&dictionary, word.c_str());
if (wordId == BAD_S3WID) throw invalid_argument(fmt::format("Unknown word '{}'.", word));
return wordId;
}
optional<BoundedTimeline<Phone>> getPhoneAlignment(
const vector<s3wid_t>& wordIds,
unique_ptr<AudioStream> audioStream,
ps_decoder_t& decoder,
ProgressSink& progressSink)
{
// Create alignment list
lambda_unique_ptr<ps_alignment_t> alignment(
ps_alignment_init(decoder.d2p),
[](ps_alignment_t* alignment) { ps_alignment_free(alignment); });
if (!alignment) throw runtime_error("Error creating alignment.");
for (s3wid_t wordId : wordIds) {
// Add word. Initial value for duration is ignored.
ps_alignment_add_word(alignment.get(), wordId, 0);
}
int error = ps_alignment_populate(alignment.get());
if (error) throw runtime_error("Error populating alignment struct.");
// Convert audio stream to the exact format PocketSphinx requires
audioStream = convertSampleRate(std::move(audioStream), sphinxSampleRate);
// Create search structure
acmod_t* acousticModel = decoder.acmod;
lambda_unique_ptr<ps_search_t> search(
state_align_search_init("state_align", decoder.config, acousticModel, alignment.get()),
[](ps_search_t* search) { ps_search_free(search); });
if (!search) throw runtime_error("Error creating search.");
// Start recognition
error = acmod_start_utt(acousticModel);
if (error) throw runtime_error("Error starting utterance processing for alignment.");
{
// Eventually end recognition
auto endRecognition = gsl::finally([&]() { acmod_end_utt(acousticModel); });
// Start search
ps_search_start(search.get());
// Process entire sound stream
auto processBuffer = [&](const vector<int16_t>& buffer) {
const int16* nextSample = buffer.data();
size_t remainingSamples = buffer.size();
while (acmod_process_raw(acousticModel, &nextSample, &remainingSamples, false) > 0) {
while (acousticModel->n_feat_frame > 0) {
ps_search_step(search.get(), acousticModel->output_frame);
acmod_advance(acousticModel);
}
}
};
processAudioStream(*audioStream.get(), processBuffer, progressSink);
// End search
error = ps_search_finish(search.get());
if (error) return boost::none;
}
// Extract phones with timestamps
char** phoneNames = decoder.dict->mdef->ciname;
BoundedTimeline<Phone> result(audioStream->getTruncatedRange());
for (ps_alignment_iter_t* it = ps_alignment_phones(alignment.get()); it; it = ps_alignment_iter_next(it)) {
// Get phone
ps_alignment_entry_t* phoneEntry = ps_alignment_iter_get(it);
s3cipid_t phoneId = phoneEntry->id.pid.cipid;
string phoneName = phoneNames[phoneId];
if (phoneName == "SIL") continue;
2016-04-09 20:07:25 +00:00
// Add entry
centiseconds start(phoneEntry->start);
centiseconds duration(phoneEntry->duration);
Timed<Phone> timedPhone(start, start + duration, PhoneConverter::get().parse(phoneName));
2016-04-09 20:07:25 +00:00
result.set(timedPhone);
}
return result;
}
void addMissingDictionaryWords(const vector<string>& words, ps_decoder_t& decoder) {
map<string, string> missingPronunciations;
for (const string& word : words) {
if (dict_wordid(decoder.dict, word.c_str()) == BAD_S3WID) {
string pronunciation;
for (Phone phone : wordToPhones(word)) {
if (pronunciation.length() > 0) pronunciation += " ";
pronunciation += PhoneConverter::get().toString(phone);
}
missingPronunciations[word] = pronunciation;
}
}
for (auto it = missingPronunciations.begin(); it != missingPronunciations.end(); ++it) {
bool isLast = it == --missingPronunciations.end();
logging::infoFormat("Unknown word '{}'. Guessing pronunciation '{}'.", it->first, it->second);
ps_add_word(&decoder, it->first.c_str(), it->second.c_str(), isLast);
}
}
BoundedTimeline<Phone> detectPhones(
unique_ptr<AudioStream> audioStream,
optional<u32string> dialog,
ProgressSink& progressSink)
{
2015-11-19 21:48:17 +00:00
// Discard Pocketsphinx output
err_set_logfp(nullptr);
// Redirect Pocketsphinx output to log
err_set_callback(sphinxLogCallback, nullptr);
2015-11-19 21:48:17 +00:00
// Make sure audio stream has no DC offset
audioStream = removeDCOffset(std::move(audioStream));
ProgressMerger totalProgressMerger(progressSink);
ProgressSink& voiceActivationProgressSink = totalProgressMerger.addSink(1.0);
ProgressSink& dialogProgressSink = totalProgressMerger.addSink(15);
try {
// Split audio into utterances
BoundedTimeline<void> utterances = detectVoiceActivity(audioStream->clone(true), voiceActivationProgressSink);
// For progress reporting: weigh utterances by length
ProgressMerger dialogProgressMerger(dialogProgressSink);
vector<ProgressSink*> utteranceProgressSinks;
for (const auto& timedUtterance : utterances) {
utteranceProgressSinks.push_back(&dialogProgressMerger.addSink(timedUtterance.getTimeRange().getLength().count()));
}
auto utteranceProgressSinkIt = utteranceProgressSinks.begin();
// Create speech recognizer
auto decoder = createDecoder();
// Set language model
lambda_unique_ptr<ngram_model_t> languageModel;
if (dialog) {
// Create dialog-specific language model
vector<string> words = tokenizeText(*dialog);
words.insert(words.begin(), "<s>");
words.push_back("</s>");
languageModel = createLanguageModel(words, *decoder->lmath);
// Add any dialog-specific words to the dictionary
addMissingDictionaryWords(words, *decoder);
} else {
path modelPath = getSphinxModelDirectory() / "en-us.lm.bin";
languageModel = lambda_unique_ptr<ngram_model_t>(
ngram_model_read(decoder->config, modelPath.string().c_str(), NGRAM_AUTO, decoder->lmath),
[](ngram_model_t* lm) { ngram_model_free(lm); });
}
ps_set_lm(decoder.get(), "lm", languageModel.get());
ps_set_search(decoder.get(), "lm");
BoundedTimeline<Phone> result(audioStream->getTruncatedRange());
2016-06-14 15:38:11 +00:00
logging::debug("Speech recognition -- start");
for (const auto& timedUtterance : utterances) {
ProgressMerger utteranceProgressMerger(**utteranceProgressSinkIt++);
ProgressSink& wordRecognitionProgressSink = utteranceProgressMerger.addSink(1.0);
ProgressSink& alignmentProgressSink = utteranceProgressMerger.addSink(0.5);
const TimeRange timeRange = timedUtterance.getTimeRange();
logging::logTimedEvent("utterance", timeRange, string(""));
auto streamSegment = createSegment(audioStream->clone(true), timeRange);
// Get words
BoundedTimeline<string> words = recognizeWords(streamSegment->clone(true), *decoder.get(), wordRecognitionProgressSink);
for (Timed<string> timedWord : words) {
timedWord.getTimeRange().shift(timedUtterance.getStart());
logging::logTimedEvent("word", timedWord);
}
// Look up words in dictionary
vector<s3wid_t> wordIds;
for (const auto& timedWord : words) {
wordIds.push_back(getWordId(timedWord.getValue(), *decoder->dict));
}
if (wordIds.empty()) continue;
// Align the words' phones with speech
BoundedTimeline<Phone> segmentPhones = getPhoneAlignment(wordIds, std::move(streamSegment), *decoder.get(), alignmentProgressSink)
.value_or(ContinuousTimeline<Phone>(streamSegment->getTruncatedRange(), Phone::Unknown));
segmentPhones.shift(timedUtterance.getStart());
for (const auto& timedPhone : segmentPhones) {
logging::logTimedEvent("phone", timedPhone);
}
// Fill result
for (const auto& timedPhone : segmentPhones) {
result.set(timedPhone);
}
}
2016-06-14 15:38:11 +00:00
logging::debug("Speech recognition -- end");
return result;
2015-12-21 12:09:09 +00:00
}
catch (...) {
std::throw_with_nested(runtime_error("Error performing speech recognition via Pocketsphinx."));
}
}