208 lines
7.8 KiB
C++
208 lines
7.8 KiB
C++
|
/*
|
||
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "webrtc/test/fake_encoder.h"
|
||
|
|
||
|
#include "testing/gtest/include/gtest/gtest.h"
|
||
|
|
||
|
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
|
||
|
#include "webrtc/system_wrappers/include/sleep.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
namespace test {
|
||
|
|
||
|
FakeEncoder::FakeEncoder(Clock* clock)
|
||
|
: clock_(clock),
|
||
|
callback_(NULL),
|
||
|
target_bitrate_kbps_(0),
|
||
|
max_target_bitrate_kbps_(-1),
|
||
|
last_encode_time_ms_(0) {
|
||
|
// Generate some arbitrary not-all-zero data
|
||
|
for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) {
|
||
|
encoded_buffer_[i] = static_cast<uint8_t>(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FakeEncoder::~FakeEncoder() {}
|
||
|
|
||
|
void FakeEncoder::SetMaxBitrate(int max_kbps) {
|
||
|
assert(max_kbps >= -1); // max_kbps == -1 disables it.
|
||
|
max_target_bitrate_kbps_ = max_kbps;
|
||
|
}
|
||
|
|
||
|
int32_t FakeEncoder::InitEncode(const VideoCodec* config,
|
||
|
int32_t number_of_cores,
|
||
|
size_t max_payload_size) {
|
||
|
config_ = *config;
|
||
|
target_bitrate_kbps_ = config_.startBitrate;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int32_t FakeEncoder::Encode(const VideoFrame& input_image,
|
||
|
const CodecSpecificInfo* codec_specific_info,
|
||
|
const std::vector<FrameType>* frame_types) {
|
||
|
assert(config_.maxFramerate > 0);
|
||
|
int64_t time_since_last_encode_ms = 1000 / config_.maxFramerate;
|
||
|
int64_t time_now_ms = clock_->TimeInMilliseconds();
|
||
|
const bool first_encode = last_encode_time_ms_ == 0;
|
||
|
if (!first_encode) {
|
||
|
// For all frames but the first we can estimate the display time by looking
|
||
|
// at the display time of the previous frame.
|
||
|
time_since_last_encode_ms = time_now_ms - last_encode_time_ms_;
|
||
|
}
|
||
|
if (time_since_last_encode_ms > 3 * 1000 / config_.maxFramerate) {
|
||
|
// Rudimentary check to make sure we don't widely overshoot bitrate target
|
||
|
// when resuming encoding after a suspension.
|
||
|
time_since_last_encode_ms = 3 * 1000 / config_.maxFramerate;
|
||
|
}
|
||
|
|
||
|
size_t bits_available =
|
||
|
static_cast<size_t>(target_bitrate_kbps_ * time_since_last_encode_ms);
|
||
|
size_t min_bits = static_cast<size_t>(
|
||
|
config_.simulcastStream[0].minBitrate * time_since_last_encode_ms);
|
||
|
if (bits_available < min_bits)
|
||
|
bits_available = min_bits;
|
||
|
size_t max_bits =
|
||
|
static_cast<size_t>(max_target_bitrate_kbps_ * time_since_last_encode_ms);
|
||
|
if (max_bits > 0 && max_bits < bits_available)
|
||
|
bits_available = max_bits;
|
||
|
last_encode_time_ms_ = time_now_ms;
|
||
|
|
||
|
assert(config_.numberOfSimulcastStreams > 0);
|
||
|
for (unsigned char i = 0; i < config_.numberOfSimulcastStreams; ++i) {
|
||
|
CodecSpecificInfo specifics;
|
||
|
memset(&specifics, 0, sizeof(specifics));
|
||
|
specifics.codecType = kVideoCodecGeneric;
|
||
|
specifics.codecSpecific.generic.simulcast_idx = i;
|
||
|
size_t min_stream_bits = static_cast<size_t>(
|
||
|
config_.simulcastStream[i].minBitrate * time_since_last_encode_ms);
|
||
|
size_t max_stream_bits = static_cast<size_t>(
|
||
|
config_.simulcastStream[i].maxBitrate * time_since_last_encode_ms);
|
||
|
size_t stream_bits = (bits_available > max_stream_bits) ? max_stream_bits :
|
||
|
bits_available;
|
||
|
size_t stream_bytes = (stream_bits + 7) / 8;
|
||
|
if (first_encode) {
|
||
|
// The first frame is a key frame and should be larger.
|
||
|
// TODO(holmer): The FakeEncoder should store the bits_available between
|
||
|
// encodes so that it can compensate for oversized frames.
|
||
|
stream_bytes *= 10;
|
||
|
}
|
||
|
if (stream_bytes > sizeof(encoded_buffer_))
|
||
|
stream_bytes = sizeof(encoded_buffer_);
|
||
|
|
||
|
EncodedImage encoded(
|
||
|
encoded_buffer_, stream_bytes, sizeof(encoded_buffer_));
|
||
|
encoded._timeStamp = input_image.timestamp();
|
||
|
encoded.capture_time_ms_ = input_image.render_time_ms();
|
||
|
encoded._frameType = (*frame_types)[i];
|
||
|
encoded._encodedWidth = config_.simulcastStream[i].width;
|
||
|
encoded._encodedHeight = config_.simulcastStream[i].height;
|
||
|
// Always encode something on the first frame.
|
||
|
if (min_stream_bits > bits_available && i > 0)
|
||
|
continue;
|
||
|
assert(callback_ != NULL);
|
||
|
if (callback_->Encoded(encoded, &specifics, NULL) != 0)
|
||
|
return -1;
|
||
|
bits_available -= std::min(encoded._length * 8, bits_available);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int32_t FakeEncoder::RegisterEncodeCompleteCallback(
|
||
|
EncodedImageCallback* callback) {
|
||
|
callback_ = callback;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int32_t FakeEncoder::Release() { return 0; }
|
||
|
|
||
|
int32_t FakeEncoder::SetChannelParameters(uint32_t packet_loss, int64_t rtt) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int32_t FakeEncoder::SetRates(uint32_t new_target_bitrate, uint32_t framerate) {
|
||
|
target_bitrate_kbps_ = new_target_bitrate;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const char* FakeEncoder::kImplementationName = "fake_encoder";
|
||
|
const char* FakeEncoder::ImplementationName() const {
|
||
|
return kImplementationName;
|
||
|
}
|
||
|
|
||
|
FakeH264Encoder::FakeH264Encoder(Clock* clock)
|
||
|
: FakeEncoder(clock), callback_(NULL), idr_counter_(0) {
|
||
|
FakeEncoder::RegisterEncodeCompleteCallback(this);
|
||
|
}
|
||
|
|
||
|
int32_t FakeH264Encoder::RegisterEncodeCompleteCallback(
|
||
|
EncodedImageCallback* callback) {
|
||
|
callback_ = callback;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int32_t FakeH264Encoder::Encoded(const EncodedImage& encoded_image,
|
||
|
const CodecSpecificInfo* codec_specific_info,
|
||
|
const RTPFragmentationHeader* fragments) {
|
||
|
const size_t kSpsSize = 8;
|
||
|
const size_t kPpsSize = 11;
|
||
|
const int kIdrFrequency = 10;
|
||
|
RTPFragmentationHeader fragmentation;
|
||
|
if (idr_counter_++ % kIdrFrequency == 0 &&
|
||
|
encoded_image._length > kSpsSize + kPpsSize + 1) {
|
||
|
const size_t kNumSlices = 3;
|
||
|
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
|
||
|
fragmentation.fragmentationOffset[0] = 0;
|
||
|
fragmentation.fragmentationLength[0] = kSpsSize;
|
||
|
fragmentation.fragmentationOffset[1] = kSpsSize;
|
||
|
fragmentation.fragmentationLength[1] = kPpsSize;
|
||
|
fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize;
|
||
|
fragmentation.fragmentationLength[2] =
|
||
|
encoded_image._length - (kSpsSize + kPpsSize);
|
||
|
const size_t kSpsNalHeader = 0x67;
|
||
|
const size_t kPpsNalHeader = 0x68;
|
||
|
const size_t kIdrNalHeader = 0x65;
|
||
|
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader;
|
||
|
encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader;
|
||
|
encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader;
|
||
|
} else {
|
||
|
const size_t kNumSlices = 1;
|
||
|
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
|
||
|
fragmentation.fragmentationOffset[0] = 0;
|
||
|
fragmentation.fragmentationLength[0] = encoded_image._length;
|
||
|
const size_t kNalHeader = 0x41;
|
||
|
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader;
|
||
|
}
|
||
|
uint8_t value = 0;
|
||
|
int fragment_counter = 0;
|
||
|
for (size_t i = 0; i < encoded_image._length; ++i) {
|
||
|
if (fragment_counter == fragmentation.fragmentationVectorSize ||
|
||
|
i != fragmentation.fragmentationOffset[fragment_counter]) {
|
||
|
encoded_image._buffer[i] = value++;
|
||
|
} else {
|
||
|
++fragment_counter;
|
||
|
}
|
||
|
}
|
||
|
return callback_->Encoded(encoded_image, NULL, &fragmentation);
|
||
|
}
|
||
|
|
||
|
DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
|
||
|
: test::FakeEncoder(clock),
|
||
|
delay_ms_(delay_ms) {}
|
||
|
|
||
|
int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
|
||
|
const CodecSpecificInfo* codec_specific_info,
|
||
|
const std::vector<FrameType>* frame_types) {
|
||
|
SleepMs(delay_ms_);
|
||
|
return FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
|
||
|
}
|
||
|
} // namespace test
|
||
|
} // namespace webrtc
|