rhubarb-lip-sync/src/phone_extraction.cpp

181 lines
5.6 KiB
C++
Raw Normal View History

#include <pocketsphinx.h>
#include <iostream>
#include <boost/filesystem.hpp>
2015-11-19 21:48:17 +00:00
#include <boost/algorithm/string.hpp>
#include <sphinxbase/err.h>
#include "phone_extraction.h"
#include "audio_input/SampleRateConverter.h"
#include "audio_input/ChannelDownmixer.h"
#include "platform_tools.h"
#include "tools.h"
using std::runtime_error;
using std::unique_ptr;
using std::shared_ptr;
using std::string;
using std::map;
using boost::filesystem::path;
unique_ptr<AudioStream> to16kHzMono(unique_ptr<AudioStream> stream) {
// Downmix, if required
if (stream->getChannelCount() != 1) {
stream.reset(new ChannelDownmixer(std::move(stream)));
}
// Downsample, if required
if (stream->getFrameRate() < 16000) {
throw runtime_error("Audio sample rate must not be below 16kHz.");
}
if (stream->getFrameRate() != 16000) {
stream.reset(new SampleRateConverter(std::move(stream), 16000));
}
return stream;
}
lambda_unique_ptr<cmd_ln_t> createConfig(path sphinxModelDirectory) {
lambda_unique_ptr<cmd_ln_t> config(
cmd_ln_init(
nullptr, ps_args(), true,
// Set acoustic model
"-hmm", (sphinxModelDirectory / "acoustic_model").string().c_str(),
// Set phonetic language model
"-allphone", (sphinxModelDirectory / "en-us-phone.lm.bin").string().c_str(),
"-allphone_ci", "yes",
// The following settings are taken from http://cmusphinx.sourceforge.net/wiki/phonemerecognition
// Set beam width applied to every frame in Viterbi search
"-beam", "1e-20",
// Set beam width applied to phone transitions
"-pbeam", "1e-20",
// Set language model probability weight
"-lw", "2.0",
nullptr),
[](cmd_ln_t* config) { cmd_ln_free_r(config); });
if (!config) throw runtime_error("Error creating configuration.");
return config;
}
lambda_unique_ptr<ps_decoder_t> createPhoneRecognizer(cmd_ln_t& config) {
lambda_unique_ptr<ps_decoder_t> recognizer(
ps_init(&config),
[](ps_decoder_t* recognizer) { ps_free(recognizer); });
if (!recognizer) throw runtime_error("Error creating speech recognizer.");
return recognizer;
}
// Converts a float in the range -1..1 to a signed 16-bit int
int16_t floatSampleToInt16(float sample) {
sample = std::max(sample, -1.0f);
sample = std::min(sample, 1.0f);
return static_cast<int16_t>(((sample + 1) / 2) * (INT16_MAX - INT16_MIN) + INT16_MIN);
}
void processAudioStream(AudioStream& audioStream16kHzMono, ps_decoder_t& recognizer) {
// Start recognition
int error = ps_start_utt(&recognizer);
if (error) throw runtime_error("Error starting utterance processing.");
// Process entire sound file
std::vector<int16_t> buffer;
const int capacity = 1600; // 0.1 second capacity
buffer.reserve(capacity);
int sampleCount = 0;
do {
// Read to buffer
buffer.clear();
while (buffer.size() < capacity) {
float sample;
if (!audioStream16kHzMono.getNextSample(sample)) break;
buffer.push_back(floatSampleToInt16(sample));
}
// Analyze buffer
int searchedFrameCount = ps_process_raw(&recognizer, buffer.data(), buffer.size(), false, false);
if (searchedFrameCount < 0) throw runtime_error("Error analyzing raw audio data.");
sampleCount += buffer.size();
} while (buffer.size());
error = ps_end_utt(&recognizer);
if (error) throw runtime_error("Error ending utterance processing.");
}
map<centiseconds, Phone> getPhones(ps_decoder_t& recognizer) {
map<centiseconds, Phone> result;
ps_seg_t *segmentationIter;
int32 score;
int endFrame;
for (segmentationIter = ps_seg_iter(&recognizer, &score); segmentationIter; segmentationIter = ps_seg_next(segmentationIter)) {
// Get phone
char const *phone = ps_seg_word(segmentationIter);
// Get timing
int startFrame;
ps_seg_frames(segmentationIter, &startFrame, &endFrame);
result[centiseconds(startFrame)] = stringToPhone(phone);
}
// Add dummy entry past the last phone
result[centiseconds(endFrame + 1)] = Phone::None;
return result;
};
2015-11-19 21:48:17 +00:00
void sphinxErrorCallback(void* user_data, err_lvl_t errorLevel, const char* format, ...) {
if (errorLevel < ERR_WARN) return;
// Create varArgs list
va_list args;
va_start(args, format);
auto _ = finally([&args](){ va_end(args); });
// Format message
const int initialSize = 256;
std::vector<char> chars(initialSize);
bool success = false;
while (!success) {
int charsWritten = vsnprintf(chars.data(), chars.size(), format, args);
if (charsWritten < 0) throw runtime_error("Error formatting Pocketsphinx log message.");
success = charsWritten < static_cast<int>(chars.size());
if (!success) chars.resize(chars.size() * 2);
}
string message(chars.data());
boost::algorithm::trim(message);
// Append message to error string
string* errorString = static_cast<string*>(user_data);
if (errorString->size() > 0) *errorString += "\n";
*errorString += message;
}
map<centiseconds, Phone> detectPhones(unique_ptr<AudioStream> audioStream) {
2015-11-19 21:48:17 +00:00
// Discard Pocketsphinx output
err_set_logfp(nullptr);
// Collect all Pocketsphinx error messages in a string
string errorMessage;
err_set_callback(sphinxErrorCallback, &errorMessage);
try {
// Create PocketSphinx configuration
path sphinxModelDirectory(getBinDirectory().parent_path() / "res/sphinx");
auto config = createConfig(sphinxModelDirectory);
// Create phone recognizer
auto recognizer = createPhoneRecognizer(*config.get());
// Convert audio stream to the exact format PocketSphinx requires
audioStream = to16kHzMono(std::move(audioStream));
// Process data
processAudioStream(*audioStream.get(), *recognizer.get());
// Collect results into map
return getPhones(*recognizer.get());
} catch (...) {
2015-11-19 21:48:17 +00:00
std::throw_with_nested(runtime_error("Error detecting phones via Pocketsphinx. " + errorMessage));
}
}