rhubarb-lip-sync/rhubarb/lib/webrtc-8d2248ff/webrtc/p2p/quic/quicsession_unittest.cc

479 lines
18 KiB
C++
Raw Permalink Normal View History

2016-06-21 20:13:05 +00:00
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/quic/quicsession.h"
#include <memory>
#include <string>
#include <vector>
#include "net/base/ip_endpoint.h"
#include "net/quic/crypto/crypto_server_config_protobuf.h"
#include "net/quic/crypto/quic_random.h"
#include "net/quic/crypto/proof_source.h"
#include "net/quic/crypto/proof_verifier.h"
#include "net/quic/crypto/quic_crypto_client_config.h"
#include "net/quic/crypto/quic_crypto_server_config.h"
#include "net/quic/quic_crypto_client_stream.h"
#include "net/quic/quic_crypto_server_stream.h"
#include "webrtc/base/common.h"
#include "webrtc/base/gunit.h"
#include "webrtc/p2p/base/faketransportcontroller.h"
#include "webrtc/p2p/quic/quicconnectionhelper.h"
#include "webrtc/p2p/quic/reliablequicstream.h"
using net::IPAddress;
using net::IPEndPoint;
using net::PerPacketOptions;
using net::Perspective;
using net::ProofVerifyContext;
using net::ProofVerifyDetails;
using net::QuicByteCount;
using net::QuicClock;
using net::QuicCompressedCertsCache;
using net::QuicConfig;
using net::QuicConnection;
using net::QuicCryptoClientConfig;
using net::QuicCryptoServerConfig;
using net::QuicCryptoClientStream;
using net::QuicCryptoServerStream;
using net::QuicCryptoStream;
using net::QuicErrorCode;
using net::QuicPacketWriter;
using net::QuicRandom;
using net::QuicServerConfigProtobuf;
using net::QuicServerId;
using net::QuicStreamId;
using net::WriteResult;
using net::WriteStatus;
using cricket::FakeTransportChannel;
using cricket::QuicConnectionHelper;
using cricket::QuicSession;
using cricket::ReliableQuicStream;
using cricket::TransportChannel;
using rtc::Thread;
// Timeout for running asynchronous operations within unit tests.
static const int kTimeoutMs = 1000;
// Testing SpdyPriority value for creating outgoing ReliableQuicStream.
static const uint8_t kDefaultPriority = 3;
// TExport keying material function
static const char kExporterLabel[] = "label";
static const char kExporterContext[] = "context";
static const size_t kExporterContextLen = sizeof(kExporterContext);
// Identifies QUIC server session
static const QuicServerId kServerId("www.google.com", 443);
// Used by QuicCryptoServerConfig to provide server credentials, returning a
// canned response equal to |success|.
class FakeProofSource : public net::ProofSource {
public:
explicit FakeProofSource(bool success) : success_(success) {}
// ProofSource override.
bool GetProof(const IPAddress& server_ip,
const std::string& hostname,
const std::string& server_config,
net::QuicVersion quic_version,
base::StringPiece chlo_hash,
bool ecdsa_ok,
scoped_refptr<net::ProofSource::Chain>* out_certs,
std::string* out_signature,
std::string* out_leaf_cert_sct) override {
if (success_) {
std::vector<std::string> certs;
certs.push_back("Required to establish handshake");
*out_certs = new ProofSource::Chain(certs);
*out_signature = "Signature";
*out_leaf_cert_sct = "Time";
}
return success_;
}
private:
// Whether or not obtaining proof source succeeds.
bool success_;
};
// Used by QuicCryptoClientConfig to verify server credentials, returning a
// canned response of QUIC_SUCCESS if |success| is true.
class FakeProofVerifier : public net::ProofVerifier {
public:
explicit FakeProofVerifier(bool success) : success_(success) {}
// ProofVerifier override
net::QuicAsyncStatus VerifyProof(
const std::string& hostname,
const uint16_t port,
const std::string& server_config,
net::QuicVersion quic_version,
base::StringPiece chlo_hash,
const std::vector<std::string>& certs,
const std::string& cert_sct,
const std::string& signature,
const ProofVerifyContext* context,
std::string* error_details,
std::unique_ptr<net::ProofVerifyDetails>* verify_details,
net::ProofVerifierCallback* callback) override {
return success_ ? net::QUIC_SUCCESS : net::QUIC_FAILURE;
}
private:
// Whether or not proof verification succeeds.
bool success_;
};
// Writes QUIC packets to a fake transport channel that simulates a network.
class FakeQuicPacketWriter : public QuicPacketWriter {
public:
explicit FakeQuicPacketWriter(FakeTransportChannel* fake_channel)
: fake_channel_(fake_channel) {}
// Sends packets across the network.
WriteResult WritePacket(const char* buffer,
size_t buf_len,
const IPAddress& self_address,
const IPEndPoint& peer_address,
PerPacketOptions* options) override {
rtc::PacketOptions packet_options;
int rv = fake_channel_->SendPacket(buffer, buf_len, packet_options, 0);
net::WriteStatus status;
if (rv > 0) {
status = net::WRITE_STATUS_OK;
} else if (fake_channel_->GetError() == EWOULDBLOCK) {
status = net::WRITE_STATUS_BLOCKED;
} else {
status = net::WRITE_STATUS_ERROR;
}
return net::WriteResult(status, rv);
}
// Returns true if the writer buffers and subsequently rewrites data
// when an attempt to write results in the underlying socket becoming
// write blocked.
bool IsWriteBlockedDataBuffered() const override { return true; }
// Returns true if the network socket is not writable.
bool IsWriteBlocked() const override { return !fake_channel_->writable(); }
// Records that the socket has become writable, for example when an EPOLLOUT
// is received or an asynchronous write completes.
void SetWritable() override { fake_channel_->SetWritable(true); }
// Returns the maximum size of the packet which can be written using this
// writer for the supplied peer address. This size may actually exceed the
// size of a valid QUIC packet.
QuicByteCount GetMaxPacketSize(
const IPEndPoint& peer_address) const override {
return net::kMaxPacketSize;
}
private:
FakeTransportChannel* fake_channel_;
};
// Wrapper for QuicSession and transport channel that stores incoming data.
class QuicSessionForTest : public QuicSession {
public:
QuicSessionForTest(std::unique_ptr<net::QuicConnection> connection,
const net::QuicConfig& config,
std::unique_ptr<FakeTransportChannel> channel)
: QuicSession(std::move(connection), config),
channel_(std::move(channel)) {
channel_->SignalReadPacket.connect(
this, &QuicSessionForTest::OnChannelReadPacket);
}
// Called when channel has packets to read.
void OnChannelReadPacket(TransportChannel* channel,
const char* data,
size_t size,
const rtc::PacketTime& packet_time,
int flags) {
OnReadPacket(data, size);
}
// Called when peer receives incoming stream from another peer.
void OnIncomingStream(ReliableQuicStream* stream) {
stream->SignalDataReceived.connect(this,
&QuicSessionForTest::OnDataReceived);
last_incoming_stream_ = stream;
}
// Called when peer has data to read from incoming stream.
void OnDataReceived(net::QuicStreamId id, const char* data, size_t length) {
last_received_data_ = std::string(data, length);
}
std::string data() { return last_received_data_; }
bool has_data() { return data().size() > 0; }
FakeTransportChannel* channel() { return channel_.get(); }
ReliableQuicStream* incoming_stream() { return last_incoming_stream_; }
private:
// Transports QUIC packets to/from peer.
std::unique_ptr<FakeTransportChannel> channel_;
// Stores data received by peer once it is sent from the other peer.
std::string last_received_data_;
// Handles incoming streams from sender.
ReliableQuicStream* last_incoming_stream_ = nullptr;
};
// Simulates data transfer between two peers using QUIC.
class QuicSessionTest : public ::testing::Test,
public QuicCryptoClientStream::ProofHandler {
public:
QuicSessionTest()
: quic_helper_(rtc::Thread::Current()),
quic_compressed_certs_cache_(
QuicCompressedCertsCache::kQuicCompressedCertsCacheSize) {}
// Instantiates |client_peer_| and |server_peer_|.
void CreateClientAndServerSessions();
std::unique_ptr<QuicSessionForTest> CreateSession(
std::unique_ptr<FakeTransportChannel> channel,
Perspective perspective);
QuicCryptoClientStream* CreateCryptoClientStream(QuicSessionForTest* session,
bool handshake_success);
QuicCryptoServerStream* CreateCryptoServerStream(QuicSessionForTest* session,
bool handshake_success);
std::unique_ptr<QuicConnection> CreateConnection(
FakeTransportChannel* channel,
Perspective perspective);
void StartHandshake(bool client_handshake_success,
bool server_handshake_success);
// Test handshake establishment and sending/receiving of data.
void TestStreamConnection(QuicSessionForTest* from_session,
QuicSessionForTest* to_session);
// Test that client and server are not connected after handshake failure.
void TestDisconnectAfterFailedHandshake();
// QuicCryptoClientStream::ProofHelper overrides.
void OnProofValid(
const QuicCryptoClientConfig::CachedState& cached) override {}
void OnProofVerifyDetailsAvailable(
const ProofVerifyDetails& verify_details) override {}
protected:
QuicConnectionHelper quic_helper_;
QuicConfig config_;
QuicClock clock_;
QuicCompressedCertsCache quic_compressed_certs_cache_;
std::unique_ptr<QuicSessionForTest> client_peer_;
std::unique_ptr<QuicSessionForTest> server_peer_;
};
// Initializes "client peer" who begins crypto handshake and "server peer" who
// establishes encryption with client.
void QuicSessionTest::CreateClientAndServerSessions() {
std::unique_ptr<FakeTransportChannel> channel1(
new FakeTransportChannel("channel1", 0));
std::unique_ptr<FakeTransportChannel> channel2(
new FakeTransportChannel("channel2", 0));
// Prevent channel1->OnReadPacket and channel2->OnReadPacket from calling
// themselves in a loop, which causes to future packets to be recursively
// consumed while the current thread blocks consumption of current ones.
channel2->SetAsync(true);
// Configure peers to send packets to each other.
channel1->Connect();
channel2->Connect();
channel1->SetDestination(channel2.get());
client_peer_ = CreateSession(std::move(channel1), Perspective::IS_CLIENT);
server_peer_ = CreateSession(std::move(channel2), Perspective::IS_SERVER);
}
std::unique_ptr<QuicSessionForTest> QuicSessionTest::CreateSession(
std::unique_ptr<FakeTransportChannel> channel,
Perspective perspective) {
std::unique_ptr<QuicConnection> quic_connection =
CreateConnection(channel.get(), perspective);
return std::unique_ptr<QuicSessionForTest>(new QuicSessionForTest(
std::move(quic_connection), config_, std::move(channel)));
}
QuicCryptoClientStream* QuicSessionTest::CreateCryptoClientStream(
QuicSessionForTest* session,
bool handshake_success) {
QuicCryptoClientConfig* client_config =
new QuicCryptoClientConfig(new FakeProofVerifier(handshake_success));
return new QuicCryptoClientStream(
kServerId, session, new ProofVerifyContext(), client_config, this);
}
QuicCryptoServerStream* QuicSessionTest::CreateCryptoServerStream(
QuicSessionForTest* session,
bool handshake_success) {
QuicCryptoServerConfig* server_config =
new QuicCryptoServerConfig("TESTING", QuicRandom::GetInstance(),
new FakeProofSource(handshake_success));
// Provide server with serialized config string to prove ownership.
QuicCryptoServerConfig::ConfigOptions options;
QuicServerConfigProtobuf* primary_config = server_config->GenerateConfig(
QuicRandom::GetInstance(), &clock_, options);
server_config->AddConfig(primary_config, clock_.WallNow());
bool use_stateless_rejects_if_peer_supported = false;
return new QuicCryptoServerStream(
server_config, &quic_compressed_certs_cache_,
use_stateless_rejects_if_peer_supported, session);
}
std::unique_ptr<QuicConnection> QuicSessionTest::CreateConnection(
FakeTransportChannel* channel,
Perspective perspective) {
FakeQuicPacketWriter* writer = new FakeQuicPacketWriter(channel);
IPAddress ip(0, 0, 0, 0);
bool owns_writer = true;
return std::unique_ptr<QuicConnection>(new QuicConnection(
0, net::IPEndPoint(ip, 0), &quic_helper_, writer, owns_writer,
perspective, net::QuicSupportedVersions()));
}
void QuicSessionTest::StartHandshake(bool client_handshake_success,
bool server_handshake_success) {
server_peer_->StartServerHandshake(
CreateCryptoServerStream(server_peer_.get(), server_handshake_success));
client_peer_->StartClientHandshake(
CreateCryptoClientStream(client_peer_.get(), client_handshake_success));
}
void QuicSessionTest::TestStreamConnection(QuicSessionForTest* from_session,
QuicSessionForTest* to_session) {
// Wait for crypto handshake to finish then check if encryption established.
ASSERT_TRUE_WAIT(from_session->IsCryptoHandshakeConfirmed() &&
to_session->IsCryptoHandshakeConfirmed(),
kTimeoutMs);
ASSERT_TRUE(from_session->IsEncryptionEstablished());
ASSERT_TRUE(to_session->IsEncryptionEstablished());
std::string from_key;
std::string to_key;
bool from_success = from_session->ExportKeyingMaterial(
kExporterLabel, kExporterContext, kExporterContextLen, &from_key);
ASSERT_TRUE(from_success);
bool to_success = to_session->ExportKeyingMaterial(
kExporterLabel, kExporterContext, kExporterContextLen, &to_key);
ASSERT_TRUE(to_success);
EXPECT_EQ(from_key.size(), kExporterContextLen);
EXPECT_EQ(from_key, to_key);
// Now we can establish encrypted outgoing stream.
ReliableQuicStream* outgoing_stream =
from_session->CreateOutgoingDynamicStream(kDefaultPriority);
ASSERT_NE(nullptr, outgoing_stream);
EXPECT_TRUE(from_session->HasOpenDynamicStreams());
outgoing_stream->SignalDataReceived.connect(
from_session, &QuicSessionForTest::OnDataReceived);
to_session->SignalIncomingStream.connect(
to_session, &QuicSessionForTest::OnIncomingStream);
// Send a test message from peer 1 to peer 2.
const char kTestMessage[] = "Hello, World!";
outgoing_stream->Write(kTestMessage, strlen(kTestMessage));
// Wait for peer 2 to receive messages.
ASSERT_TRUE_WAIT(to_session->has_data(), kTimeoutMs);
ReliableQuicStream* incoming = to_session->incoming_stream();
ASSERT_TRUE(incoming);
EXPECT_TRUE(to_session->HasOpenDynamicStreams());
EXPECT_EQ(to_session->data(), kTestMessage);
// Send a test message from peer 2 to peer 1.
const char kTestResponse[] = "Response";
incoming->Write(kTestResponse, strlen(kTestResponse));
// Wait for peer 1 to receive messages.
ASSERT_TRUE_WAIT(from_session->has_data(), kTimeoutMs);
EXPECT_EQ(from_session->data(), kTestResponse);
}
// Client and server should disconnect when proof verification fails.
void QuicSessionTest::TestDisconnectAfterFailedHandshake() {
EXPECT_TRUE_WAIT(!client_peer_->connection()->connected(), kTimeoutMs);
EXPECT_TRUE_WAIT(!server_peer_->connection()->connected(), kTimeoutMs);
EXPECT_FALSE(client_peer_->IsEncryptionEstablished());
EXPECT_FALSE(client_peer_->IsCryptoHandshakeConfirmed());
EXPECT_FALSE(server_peer_->IsEncryptionEstablished());
EXPECT_FALSE(server_peer_->IsCryptoHandshakeConfirmed());
}
// Establish encryption then send message from client to server.
TEST_F(QuicSessionTest, ClientToServer) {
CreateClientAndServerSessions();
StartHandshake(true, true);
TestStreamConnection(client_peer_.get(), server_peer_.get());
}
// Establish encryption then send message from server to client.
TEST_F(QuicSessionTest, ServerToClient) {
CreateClientAndServerSessions();
StartHandshake(true, true);
TestStreamConnection(server_peer_.get(), client_peer_.get());
}
// Make client fail to verify proof from server.
TEST_F(QuicSessionTest, ClientRejection) {
CreateClientAndServerSessions();
StartHandshake(false, true);
TestDisconnectAfterFailedHandshake();
}
// Make server fail to give proof to client.
TEST_F(QuicSessionTest, ServerRejection) {
CreateClientAndServerSessions();
StartHandshake(true, false);
TestDisconnectAfterFailedHandshake();
}
// Test that data streams are not created before handshake.
TEST_F(QuicSessionTest, CannotCreateDataStreamBeforeHandshake) {
CreateClientAndServerSessions();
EXPECT_EQ(nullptr, server_peer_->CreateOutgoingDynamicStream(5));
EXPECT_EQ(nullptr, client_peer_->CreateOutgoingDynamicStream(5));
}
// Test that closing a QUIC stream causes the QuicSession to remove it.
TEST_F(QuicSessionTest, CloseQuicStream) {
CreateClientAndServerSessions();
StartHandshake(true, true);
ASSERT_TRUE_WAIT(client_peer_->IsCryptoHandshakeConfirmed() &&
server_peer_->IsCryptoHandshakeConfirmed(),
kTimeoutMs);
ReliableQuicStream* stream = client_peer_->CreateOutgoingDynamicStream(5);
ASSERT_NE(nullptr, stream);
EXPECT_FALSE(client_peer_->IsClosedStream(stream->id()));
stream->Close();
EXPECT_TRUE(client_peer_->IsClosedStream(stream->id()));
}