rhubarb-lip-sync/rhubarb/lib/webrtc-8d2248ff/webrtc/base/task_queue_libevent.cc

319 lines
9.1 KiB
C++
Raw Permalink Normal View History

2016-06-21 20:13:05 +00:00
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/task_queue.h"
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include "base/third_party/libevent/event.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/task_queue_posix.h"
#include "webrtc/base/timeutils.h"
namespace rtc {
using internal::GetQueuePtrTls;
using internal::AutoSetCurrentQueuePtr;
namespace {
static const char kQuit = 1;
static const char kRunTask = 2;
struct TimerEvent {
explicit TimerEvent(std::unique_ptr<QueuedTask> task)
: task(std::move(task)) {}
~TimerEvent() { event_del(&ev); }
event ev;
std::unique_ptr<QueuedTask> task;
};
bool SetNonBlocking(int fd) {
const int flags = fcntl(fd, F_GETFL);
RTC_CHECK(flags != -1);
return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1;
}
} // namespace
struct TaskQueue::QueueContext {
explicit QueueContext(TaskQueue* q) : queue(q), is_active(true) {}
TaskQueue* queue;
bool is_active;
// Holds a list of events pending timers for cleanup when the loop exits.
std::list<TimerEvent*> pending_timers_;
};
class TaskQueue::PostAndReplyTask : public QueuedTask {
public:
PostAndReplyTask(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue)
: task_(std::move(task)),
reply_(std::move(reply)),
reply_queue_(reply_queue) {
reply_queue->PrepareReplyTask(this);
}
~PostAndReplyTask() override {
CritScope lock(&lock_);
if (reply_queue_)
reply_queue_->ReplyTaskDone(this);
}
void OnReplyQueueGone() {
CritScope lock(&lock_);
reply_queue_ = nullptr;
}
private:
bool Run() override {
if (!task_->Run())
task_.release();
CritScope lock(&lock_);
if (reply_queue_)
reply_queue_->PostTask(std::move(reply_));
return true;
}
CriticalSection lock_;
std::unique_ptr<QueuedTask> task_;
std::unique_ptr<QueuedTask> reply_;
TaskQueue* reply_queue_ GUARDED_BY(lock_);
};
class TaskQueue::SetTimerTask : public QueuedTask {
public:
SetTimerTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds)
: task_(std::move(task)),
milliseconds_(milliseconds),
posted_(Time32()) {}
private:
bool Run() override {
// Compensate for the time that has passed since construction
// and until we got here.
uint32_t post_time = Time32() - posted_;
TaskQueue::Current()->PostDelayedTask(
std::move(task_),
post_time > milliseconds_ ? 0 : milliseconds_ - post_time);
return true;
}
std::unique_ptr<QueuedTask> task_;
const uint32_t milliseconds_;
const uint32_t posted_;
};
TaskQueue::TaskQueue(const char* queue_name)
: event_base_(event_base_new()),
wakeup_event_(new event()),
thread_(&TaskQueue::ThreadMain, this, queue_name) {
RTC_DCHECK(queue_name);
int fds[2];
RTC_CHECK(pipe(fds) == 0);
SetNonBlocking(fds[0]);
SetNonBlocking(fds[1]);
wakeup_pipe_out_ = fds[0];
wakeup_pipe_in_ = fds[1];
event_set(wakeup_event_.get(), wakeup_pipe_out_, EV_READ | EV_PERSIST,
OnWakeup, this);
event_base_set(event_base_, wakeup_event_.get());
event_add(wakeup_event_.get(), 0);
thread_.Start();
}
TaskQueue::~TaskQueue() {
RTC_DCHECK(!IsCurrent());
struct timespec ts;
char message = kQuit;
while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) {
// The queue is full, so we have no choice but to wait and retry.
RTC_CHECK_EQ(EAGAIN, errno);
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
nanosleep(&ts, nullptr);
}
thread_.Stop();
event_del(wakeup_event_.get());
close(wakeup_pipe_in_);
close(wakeup_pipe_out_);
wakeup_pipe_in_ = -1;
wakeup_pipe_out_ = -1;
{
// Synchronize against any pending reply tasks that might be running on
// other queues.
CritScope lock(&pending_lock_);
for (auto* reply : pending_replies_)
reply->OnReplyQueueGone();
pending_replies_.clear();
}
event_base_free(event_base_);
}
// static
TaskQueue* TaskQueue::Current() {
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
return ctx ? ctx->queue : nullptr;
}
// static
bool TaskQueue::IsCurrent(const char* queue_name) {
TaskQueue* current = Current();
return current && current->thread_.name().compare(queue_name) == 0;
}
bool TaskQueue::IsCurrent() const {
return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef());
}
void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
RTC_DCHECK(task.get());
// libevent isn't thread safe. This means that we can't use methods such
// as event_base_once to post tasks to the worker thread from a different
// thread. However, we can use it when posting from the worker thread itself.
if (IsCurrent()) {
if (event_base_once(event_base_, -1, EV_TIMEOUT, &TaskQueue::RunTask,
task.get(), nullptr) == 0) {
task.release();
}
} else {
QueuedTask* task_id = task.get(); // Only used for comparison.
{
CritScope lock(&pending_lock_);
pending_.push_back(std::move(task));
}
char message = kRunTask;
if (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) {
LOG(WARNING) << "Failed to queue task.";
CritScope lock(&pending_lock_);
pending_.remove_if([task_id](std::unique_ptr<QueuedTask>& t) {
return t.get() == task_id;
});
}
}
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
if (IsCurrent()) {
TimerEvent* timer = new TimerEvent(std::move(task));
evtimer_set(&timer->ev, &TaskQueue::RunTimer, timer);
event_base_set(event_base_, &timer->ev);
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
ctx->pending_timers_.push_back(timer);
timeval tv = {milliseconds / 1000, (milliseconds % 1000) * 1000};
event_add(&timer->ev, &tv);
} else {
PostTask(std::unique_ptr<QueuedTask>(
new SetTimerTask(std::move(task), milliseconds)));
}
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
std::unique_ptr<QueuedTask> wrapper_task(
new PostAndReplyTask(std::move(task), std::move(reply), reply_queue));
PostTask(std::move(wrapper_task));
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return PostTaskAndReply(std::move(task), std::move(reply), Current());
}
// static
bool TaskQueue::ThreadMain(void* context) {
TaskQueue* me = static_cast<TaskQueue*>(context);
QueueContext queue_context(me);
pthread_setspecific(GetQueuePtrTls(), &queue_context);
while (queue_context.is_active)
event_base_loop(me->event_base_, 0);
pthread_setspecific(GetQueuePtrTls(), nullptr);
for (TimerEvent* timer : queue_context.pending_timers_)
delete timer;
return false;
}
// static
void TaskQueue::OnWakeup(int socket, short flags, void* context) { // NOLINT
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
RTC_DCHECK(ctx->queue->wakeup_pipe_out_ == socket);
char buf;
RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf)));
switch (buf) {
case kQuit:
ctx->is_active = false;
event_base_loopbreak(ctx->queue->event_base_);
break;
case kRunTask: {
std::unique_ptr<QueuedTask> task;
{
CritScope lock(&ctx->queue->pending_lock_);
RTC_DCHECK(!ctx->queue->pending_.empty());
task = std::move(ctx->queue->pending_.front());
ctx->queue->pending_.pop_front();
RTC_DCHECK(task.get());
}
if (!task->Run())
task.release();
break;
}
default:
RTC_NOTREACHED();
break;
}
}
// static
void TaskQueue::RunTask(int fd, short flags, void* context) { // NOLINT
auto* task = static_cast<QueuedTask*>(context);
if (task->Run())
delete task;
}
// static
void TaskQueue::RunTimer(int fd, short flags, void* context) { // NOLINT
TimerEvent* timer = static_cast<TimerEvent*>(context);
if (!timer->task->Run())
timer->task.release();
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
ctx->pending_timers_.remove(timer);
delete timer;
}
void TaskQueue::PrepareReplyTask(PostAndReplyTask* reply_task) {
RTC_DCHECK(reply_task);
CritScope lock(&pending_lock_);
pending_replies_.push_back(reply_task);
}
void TaskQueue::ReplyTaskDone(PostAndReplyTask* reply_task) {
CritScope lock(&pending_lock_);
pending_replies_.remove(reply_task);
}
} // namespace rtc