rhubarb-lip-sync/rhubarb/lib/sphinxbase-rev13216/include/sphinxbase/ngram_model.h

704 lines
23 KiB
C
Raw Permalink Normal View History

2015-10-19 19:45:08 +00:00
/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 2007 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/**
* @file ngram_model.h
* @brief N-Gram language models
* @author David Huggins-Daines <dhuggins@cs.cmu.edu>
*/
#ifndef __NGRAM_MODEL_H__
#define __NGRAM_MODEL_H__
#include <stdarg.h>
/* Win32/WinCE DLL gunk */
#include <sphinxbase/sphinxbase_export.h>
#include <sphinxbase/prim_type.h>
#include <sphinxbase/cmd_ln.h>
#include <sphinxbase/logmath.h>
#include <sphinxbase/mmio.h>
#ifdef __cplusplus
extern "C" {
#endif
#if 0
/* Fool Emacs. */
}
#endif
/**
* Abstract type representing an N-Gram based language model.
*/
typedef struct ngram_model_s ngram_model_t;
/**
* Abstract type representing a word class in an N-Gram model.
*/
typedef struct ngram_class_s ngram_class_t;
/**
* File types for N-Gram files
*/
typedef enum ngram_file_type_e {
NGRAM_INVALID = -1, /**< Not a valid file type. */
NGRAM_AUTO, /**< Determine file type automatically. */
NGRAM_ARPA, /**< ARPABO text format (the standard). */
NGRAM_BIN, /**< Sphinx .DMP format. */
} ngram_file_type_t;
#define NGRAM_INVALID_WID -1 /**< Impossible word ID */
/**
* Read an N-Gram model from a file on disk.
*
* @param config Optional pointer to a set of command-line arguments.
* Recognized arguments are:
*
* - -mmap (boolean) whether to use memory-mapped I/O
* - -lw (float32) language weight to apply to the model
* - -wip (float32) word insertion penalty to apply to the model
*
* @param file_name path to the file to read.
* @param file_type type of the file, or NGRAM_AUTO to determine automatically.
* @param lmath Log-math parameters to use for probability
* calculations. Ownership of this object is assumed by
* the newly created ngram_model_t, and you should not
* attempt to free it manually. If you wish to reuse it
* elsewhere, you must retain it with logmath_retain().
* @return newly created ngram_model_t.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_read(cmd_ln_t *config,
const char *file_name,
ngram_file_type_t file_type,
logmath_t *lmath);
/**
* Write an N-Gram model to disk.
*
* @return 0 for success, <0 on error
*/
SPHINXBASE_EXPORT
int ngram_model_write(ngram_model_t *model, const char *file_name,
ngram_file_type_t format);
/**
* Guess the file type for an N-Gram model from the filename.
*
* @return the guessed file type, or NGRAM_INVALID if none could be guessed.
*/
SPHINXBASE_EXPORT
ngram_file_type_t ngram_file_name_to_type(const char *file_name);
/**
* Get the N-Gram file type from a string.
*
* @return file type, or NGRAM_INVALID if no such file type exists.
*/
SPHINXBASE_EXPORT
ngram_file_type_t ngram_str_to_type(const char *str_name);
/**
* Get the canonical name for an N-Gram file type.
*
* @return read-only string with the name for this file type, or NULL
* if no such type exists.
*/
SPHINXBASE_EXPORT
char const *ngram_type_to_str(int type);
/**
* Retain ownership of an N-Gram model.
*
* @return Pointer to retained model.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_retain(ngram_model_t *model);
/**
* Release memory associated with an N-Gram model.
*
* @return new reference count (0 if freed completely)
*/
SPHINXBASE_EXPORT
int ngram_model_free(ngram_model_t *model);
/**
* Constants for case folding.
*/
typedef enum ngram_case_e {
NGRAM_UPPER,
NGRAM_LOWER
} ngram_case_t;
/**
* Case-fold word strings in an N-Gram model.
*
* WARNING: This is not Unicode aware, so any non-ASCII characters
* will not be converted.
*/
SPHINXBASE_EXPORT
int ngram_model_casefold(ngram_model_t *model, int kase);
/**
* Apply a language weight, insertion penalty, and unigram weight to a
* language model.
*
* This will change the values output by ngram_score() and friends.
* This is done for efficiency since in decoding, these are the only
* values we actually need. Call ngram_prob() if you want the "raw"
* N-Gram probability estimate.
*
* To remove all weighting, call ngram_apply_weights(model, 1.0, 1.0).
*/
SPHINXBASE_EXPORT
int ngram_model_apply_weights(ngram_model_t *model,
float32 lw, float32 wip);
/**
* Get the current weights from a language model.
*
* @param model The model in question.
* @param out_log_wip Output: (optional) logarithm of word insertion penalty.
* @return language weight.
*/
SPHINXBASE_EXPORT
float32 ngram_model_get_weights(ngram_model_t *model, int32 *out_log_wip);
/**
* Get the score (scaled, interpolated log-probability) for a general
* N-Gram.
*
* The argument list consists of the history words (as null-terminated
* strings) of the N-Gram, <b>in reverse order</b>, followed by NULL.
* Therefore, if you wanted to get the N-Gram score for "a whole joy",
* you would call:
*
* <pre>
* score = ngram_score(model, "joy", "whole", "a", NULL);
* </pre>
*
* This is not the function to use in decoding, because it has some
* overhead for looking up words. Use ngram_ng_score(),
* ngram_tg_score(), or ngram_bg_score() instead. In the future there
* will probably be a version that takes a general language model
* state object, to support suffix-array LM and things like that.
*
* If one of the words is not in the LM's vocabulary, the result will
* depend on whether this is an open or closed vocabulary language
* model. For an open-vocabulary model, unknown words are all mapped
* to the unigram &lt;UNK&gt; which has a non-zero probability and also
* participates in higher-order N-Grams. Therefore, you will get a
* score of some sort in this case.
*
* For a closed-vocabulary model, unknown words are impossible and
* thus have zero probability. Therefore, if <code>word</code> is
* unknown, this function will return a "zero" log-probability, i.e. a
* large negative number. To obtain this number for comparison, call
* ngram_zero().
*/
SPHINXBASE_EXPORT
int32 ngram_score(ngram_model_t *model, const char *word, ...);
/**
* Quick trigram score lookup.
*/
SPHINXBASE_EXPORT
int32 ngram_tg_score(ngram_model_t *model,
int32 w3, int32 w2, int32 w1,
int32 *n_used);
/**
* Quick bigram score lookup.
*/
SPHINXBASE_EXPORT
int32 ngram_bg_score(ngram_model_t *model,
int32 w2, int32 w1,
int32 *n_used);
/**
* Quick general N-Gram score lookup.
*/
SPHINXBASE_EXPORT
int32 ngram_ng_score(ngram_model_t *model, int32 wid, int32 *history,
int32 n_hist, int32 *n_used);
/**
* Get the "raw" log-probability for a general N-Gram.
*
* This returns the log-probability of an N-Gram, as defined in the
* language model file, before any language weighting, interpolation,
* or insertion penalty has been applied.
*
* @note When backing off to a unigram from a bigram or trigram, the
* unigram weight (interpolation with uniform) is not removed.
*/
SPHINXBASE_EXPORT
int32 ngram_probv(ngram_model_t *model, const char *word, ...);
/**
* Get the "raw" log-probability for a general N-Gram.
*
* This returns the log-probability of an N-Gram, as defined in the
* language model file, before any language weighting, interpolation,
* or insertion penalty has been applied.
*
* @note When backing off to a unigram from a bigram or trigram, the
* unigram weight (interpolation with uniform) is not removed.
*/
SPHINXBASE_EXPORT
int32 ngram_prob(ngram_model_t *model, const char *const *words, int32 n);
/**
* Quick "raw" probability lookup for a general N-Gram.
*
* See documentation for ngram_ng_score() and ngram_apply_weights()
* for an explanation of this.
*/
SPHINXBASE_EXPORT
int32 ngram_ng_prob(ngram_model_t *model, int32 wid, int32 *history,
int32 n_hist, int32 *n_used);
/**
* Convert score to "raw" log-probability.
*
* @note The unigram weight (interpolation with uniform) is not
* removed, since there is no way to know which order of N-Gram
* generated <code>score</code>.
*
* @param model The N-Gram model from which score was obtained.
* @param score The N-Gram score to convert
* @return The raw log-probability value.
*/
SPHINXBASE_EXPORT
int32 ngram_score_to_prob(ngram_model_t *model, int32 score);
/**
* Look up numerical word ID.
*/
SPHINXBASE_EXPORT
int32 ngram_wid(ngram_model_t *model, const char *word);
/**
* Look up word string for numerical word ID.
*/
SPHINXBASE_EXPORT
const char *ngram_word(ngram_model_t *model, int32 wid);
/**
* Get the unknown word ID for a language model.
*
* Language models can be either "open vocabulary" or "closed
* vocabulary". The difference is that the former assigns a fixed
* non-zero unigram probability to unknown words, while the latter
* does not allow unknown words (or, equivalently, it assigns them
* zero probability). If this is a closed vocabulary model, this
* function will return NGRAM_INVALID_WID.
*
* @return The ID for the unknown word, or NGRAM_INVALID_WID if none
* exists.
*/
SPHINXBASE_EXPORT
int32 ngram_unknown_wid(ngram_model_t *model);
/**
* Get the "zero" log-probability value for a language model.
*/
SPHINXBASE_EXPORT
int32 ngram_zero(ngram_model_t *model);
/**
* Get the order of the N-gram model (i.e. the "N" in "N-gram")
*/
SPHINXBASE_EXPORT
int32 ngram_model_get_size(ngram_model_t *model);
/**
* Get the counts of the various N-grams in the model.
*/
SPHINXBASE_EXPORT
uint32 const *ngram_model_get_counts(ngram_model_t *model);
/**
* M-gram iterator object.
*/
typedef struct ngram_iter_s ngram_iter_t;
/**
* Iterate over all M-grams.
*
* @param model Language model to query.
* @param m Order of the M-Grams requested minus one (i.e. order of the history)
* @return An iterator over the requested M, or NULL if no N-grams of
* order M+1 exist.
*/
SPHINXBASE_EXPORT
ngram_iter_t *ngram_model_mgrams(ngram_model_t *model, int m);
/**
* Get an iterator over M-grams pointing to the specified M-gram.
*/
SPHINXBASE_EXPORT
ngram_iter_t *ngram_iter(ngram_model_t *model, const char *word, ...);
/**
* Get an iterator over M-grams pointing to the specified M-gram.
*/
SPHINXBASE_EXPORT
ngram_iter_t *ngram_ng_iter(ngram_model_t *model, int32 wid, int32 *history, int32 n_hist);
/**
* Get information from the current M-gram in an iterator.
*
* @param out_score Output: Score for this M-gram (including any word
* penalty and language weight).
* @param out_bowt Output: Backoff weight for this M-gram.
* @return read-only array of word IDs.
*/
SPHINXBASE_EXPORT
int32 const *ngram_iter_get(ngram_iter_t *itor,
int32 *out_score,
int32 *out_bowt);
/**
* Iterate over all M-gram successors of an M-1-gram.
*
* @param itor Iterator pointing to the M-1-gram to get successors of.
*/
SPHINXBASE_EXPORT
ngram_iter_t *ngram_iter_successors(ngram_iter_t *itor);
/**
* Advance an M-gram iterator.
*/
SPHINXBASE_EXPORT
ngram_iter_t *ngram_iter_next(ngram_iter_t *itor);
/**
* Terminate an M-gram iterator.
*/
SPHINXBASE_EXPORT
void ngram_iter_free(ngram_iter_t *itor);
/**
* Add a word (unigram) to the language model.
*
* @note The semantics of this are not particularly well-defined for
* model sets, and may be subject to change. Currently this will add
* the word to all of the submodels
*
* @param model The model to add a word to.
* @param word Text of the word to add.
* @param weight Weight of this word relative to the uniform distribution.
* @return The word ID for the new word.
*/
SPHINXBASE_EXPORT
int32 ngram_model_add_word(ngram_model_t *model,
const char *word, float32 weight);
/**
* Read a class definition file and add classes to a language model.
*
* This function assumes that the class tags have already been defined
* as unigrams in the language model. All words in the class
* definition will be added to the vocabulary as special in-class words.
* For this reason is is necessary that they not have the same names
* as any words in the general unigram distribution. The convention
* is to suffix them with ":class_tag", where class_tag is the class
* tag minus the enclosing square brackets.
*
* @return 0 for success, <0 for error
*/
SPHINXBASE_EXPORT
int32 ngram_model_read_classdef(ngram_model_t *model,
const char *file_name);
/**
* Add a new class to a language model.
*
* If <code>classname</code> already exists in the unigram set for
* <code>model</code>, then it will be converted to a class tag, and
* <code>classweight</code> will be ignored. Otherwise, a new unigram
* will be created as in ngram_model_add_word().
*/
SPHINXBASE_EXPORT
int32 ngram_model_add_class(ngram_model_t *model,
const char *classname,
float32 classweight,
char **words,
const float32 *weights,
int32 n_words);
/**
* Add a word to a class in a language model.
*
* @param model The model to add a word to.
* @param classname Name of the class to add this word to.
* @param word Text of the word to add.
* @param weight Weight of this word relative to the within-class uniform distribution.
* @return The word ID for the new word.
*/
SPHINXBASE_EXPORT
int32 ngram_model_add_class_word(ngram_model_t *model,
const char *classname,
const char *word,
float32 weight);
/**
* Create a set of language models sharing a common space of word IDs.
*
* This function creates a meta-language model which groups together a
* set of language models, synchronizing word IDs between them. To
* use this language model, you can either select a submodel to use
* exclusively using ngram_model_set_select(), or interpolate
* between scores from all models. To do the latter, you can either
* pass a non-NULL value of the <code>weights</code> parameter, or
* re-activate interpolation later on by calling
* ngram_model_set_interp().
*
* In order to make this efficient, there are some restrictions on the
* models that can be grouped together. The most important (and
* currently the only) one is that they <strong>must</strong> all
* share the same log-math parameters.
*
* @param config Any configuration parameters to be shared between models.
* @param models Array of pointers to previously created language models.
* @param names Array of strings to use as unique identifiers for LMs.
* @param weights Array of weights to use in interpolating LMs, or NULL
* for no interpolation.
* @param n_models Number of elements in the arrays passed to this function.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_init(cmd_ln_t *config,
ngram_model_t **models,
char **names,
const float32 *weights,
int32 n_models);
/**
* Read a set of language models from a control file.
*
* This file creates a language model set from a "control file" of
* the type used in Sphinx-II and Sphinx-III.
* File format (optional stuff is indicated by enclosing in []):
*
* <pre>
* [{ LMClassFileName LMClassFilename ... }]
* TrigramLMFileName LMName [{ LMClassName LMClassName ... }]
* TrigramLMFileName LMName [{ LMClassName LMClassName ... }]
* ...
* (There should be whitespace around the { and } delimiters.)
* </pre>
*
* This is an extension of the older format that had only TrigramLMFilenName
* and LMName pairs. The new format allows a set of LMClass files to be read
* in and referred to by the trigram LMs.
*
* No "comments" allowed in this file.
*
* @param config Configuration parameters.
* @param lmctlfile Path to the language model control file.
* @param lmath Log-math parameters to use for probability
* calculations. Ownership of this object is assumed by
* the newly created ngram_model_t, and you should not
* attempt to free it manually. If you wish to reuse it
* elsewhere, you must retain it with logmath_retain().
* @return newly created language model set.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_read(cmd_ln_t *config,
const char *lmctlfile,
logmath_t *lmath);
/**
* Returns the number of language models in a set.
*/
SPHINXBASE_EXPORT
int32 ngram_model_set_count(ngram_model_t *set);
/**
* Iterator over language models in a set.
*/
typedef struct ngram_model_set_iter_s ngram_model_set_iter_t;
/**
* Begin iterating over language models in a set.
*
* @return iterator pointing to the first language model, or NULL if no models remain.
*/
SPHINXBASE_EXPORT
ngram_model_set_iter_t *ngram_model_set_iter(ngram_model_t *set);
/**
* Move to the next language model in a set.
*
* @return iterator pointing to the next language model, or NULL if no models remain.
*/
SPHINXBASE_EXPORT
ngram_model_set_iter_t *ngram_model_set_iter_next(ngram_model_set_iter_t *itor);
/**
* Finish iteration over a langauge model set.
*/
SPHINXBASE_EXPORT
void ngram_model_set_iter_free(ngram_model_set_iter_t *itor);
/**
* Get language model and associated name from an iterator.
*
* @param itor the iterator
* @param lmname Output: string name associated with this language model.
* @return Language model pointed to by this iterator.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_iter_model(ngram_model_set_iter_t *itor,
char const **lmname);
/**
* Select a single language model from a set for scoring.
*
* @return the newly selected language model, or NULL if no language
* model by that name exists.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_select(ngram_model_t *set,
const char *name);
/**
* Look up a language model by name from a set.
*
* @return language model corresponding to <code>name</code>, or NULL
* if no language model by that name exists.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_lookup(ngram_model_t *set,
const char *name);
/**
* Get the current language model name, if any.
*/
SPHINXBASE_EXPORT
const char *ngram_model_set_current(ngram_model_t *set);
/**
* Set interpolation weights for a set and enables interpolation.
*
* If <code>weights</code> is NULL, any previously initialized set of
* weights will be used. If no weights were specified to
* ngram_model_set_init(), then a uniform distribution will be used.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_interp(ngram_model_t *set,
const char **names,
const float32 *weights);
/**
* Add a language model to a set.
*
* @param set The language model set to add to.
* @param model The language model to add.
* @param name The name to associate with this model.
* @param weight Interpolation weight for this model, relative to the
* uniform distribution. 1.0 is a safe value.
* @param reuse_widmap Reuse the existing word-ID mapping in
* <code>set</code>. Any new words present in <code>model</code>
* will not be added to the word-ID mapping in this case.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_add(ngram_model_t *set,
ngram_model_t *model,
const char *name,
float32 weight,
int reuse_widmap);
/**
* Remove a language model from a set.
*
* @param set The language model set to remove from.
* @param name The name associated with the model to remove.
* @param reuse_widmap Reuse the existing word-ID mapping in
* <code>set</code>.
*/
SPHINXBASE_EXPORT
ngram_model_t *ngram_model_set_remove(ngram_model_t *set,
const char *name,
int reuse_widmap);
/**
* Set the word-to-ID mapping for this model set.
*/
SPHINXBASE_EXPORT
void ngram_model_set_map_words(ngram_model_t *set,
const char **words,
int32 n_words);
/**
* Query the word-ID mapping for the current language model.
*
* @return the local word ID in the current language model, or
* NGRAM_INVALID_WID if <code>set_wid</code> is invalid or
* interpolation is enabled.
*/
SPHINXBASE_EXPORT
int32 ngram_model_set_current_wid(ngram_model_t *set,
int32 set_wid);
/**
* Test whether a word ID corresponds to a known word in the current
* state of the language model set.
*
* @return If there is a current language model, returns non-zero if
* <code>set_wid</code> corresponds to a known word in that language
* model. Otherwise, returns non-zero if <code>set_wid</code>
* corresponds to a known word in any language model.
*/
SPHINXBASE_EXPORT
int32 ngram_model_set_known_wid(ngram_model_t *set, int32 set_wid);
/**
* Flush any cached N-Gram information
*/
SPHINXBASE_EXPORT
void ngram_model_flush(ngram_model_t *lm);
#ifdef __cplusplus
}
#endif
#endif /* __NGRAM_MODEL_H__ */